Reference 
1. J.H.B. Kemperman, The oscillating random walk, Stoch. Proc. Appl., 2 (1974), ¹1, 1–29.
2. D. Choi, C. Knessl, C. Tier, A queueing system with queue length dependent service times with applications
to cell discarding in ATM networks, J. of Appl. Math. and Stoch. Anal., 12 (1999), ¹1, 35–62.
3. K. Sriaram, R.S. McKinney, M.H. Sherif, Voice packetization and compression in broadband ATM
networks, IEEE J. on Selected Areas in Commun., 9 (1991), ¹3, 294–304.
4. W.B. Gong, A. Yan, C.G. Cassandras, The $M/G/1$ queue with queuelength dependent arrival rate,
Stoch. Models, 8 (1992), ¹4, 733–741.
5. S.Q. Li, Overload control in a finite message storage buffer, IEEE Trans. Commun., 37 (1989), ¹12,
1330–1338.
6. H. Takagi, Analysis of a finitecapacity $M/G/1$ queue with a resume level, Perf. Eval., 5 (1985), ¹3,
197–203.
7. A. Dudin, Optimal control for an $M^x/G/1$ queue with two operation modes, Prob. in the Eng. and
Inform. Scien., 11 (1997), ¹2, 255–265.
8. M. Bratiychuk, A. Chydzinski, On the ergodic distribution of oscillating queueing systems, J. of Appl.
Math. and Stoch. Anal., 16 (2003), ¹4, 311–326.
9. A.N. Dudin, V.I. Klimenok, G.V. Tsarenkov, Calculation of characteristics of singleserver queuing
system with batch Markov flow, semiMarkov service and finite buffer, Avtomatika i Telemech., 8 (2002),
87–101. (in Russian)
10. A.M. Bratiichuk,The system $M^\theta/G/1/b$ with a resume level of input flow, Visn. Kyiv Univ. Ser. Phys.
Math. Nauk., (2007), ¹1, 114–121. (in Ukrainian)
11. K.Yu. Zhernovyi, Study of the $M^\theta/G/1/m$ system with service regime switchings and regenerative blocking
of the flow of customers, Informatsyonnyye Protsessy, 11 (2011), ¹2, 203–224. (in Russian)
12. K.Yu. Zhernovyi, Investigation of the $M^\theta/G/1/m$ system with service regime switchings and threshold
blocking of the input flow, J. of Communicat. Technology and Electronics, 56 (2011), ¹12, 1570–1584.
13. K.Yu. Zhernovyi, Stationary characteristics of the $M^\theta/G/1/m$ system with the threshold functioning
strategy, J. of Communicat. Technology and Electronics, 56 (2011), ¹12, 1585–1596.
14. K.Yu. Zhernovyi, The general model of the $M^\theta/G/1/m$ system with threshold functioning strategy, Nauk.
Visn. Chernivets. Univ. Math., 1 (2011), ¹3, 26–37. (in Ukrainian)
15. V.S. Korolyuk, Boundary Problems for Compound Poisson Processes, Naukova Dumka, Kyiv, 1975. (in
Russian)
16. G.I. Falin, J.G.C. Templeton, Retrial Queues, Chapman and Hall, London, 1997.
17. A.A. Borovkov, Probability Theory, Nauka, Moskow, 1986. (in Russian)
