Reference |
1. Marchenko V.A., Khruslov E.Ya. Homogenized Models of Microinhomogeneous Media. Kiev, Naukova
Dumka, 2005 (in Russian). English translated in Homogenization of partial differential equations,
Progress in Mathematical Physics, V.46, Birkhauser, Boston, 2006.
2. Sanchez Hubert J., Sanchez Palencia E. Vibration and coupling of continuous systems. Springer-Verlag,
1989. 421p.
3. Oleinik O.A., Shamaev A.S., Yosifian G.A. Mathematical Problems in Elasticity and Homogenization.
North-Holland, London, 1992.
4. Zhikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of differential operators and integral functionals,
Springer Verlag, Berlin, Heidelberg, NewYork, 1994.
5. Piatnitski A.L., Chechkin G.A., Shamaev A.S. Homogenization. Methods and Applications, V.234 of
Translations of Mathematical Monographs, AMS, Providence, Rhode Island USA, 2007.
6. Lobo M., Nazarov S.A., P.erez E. Eigen-oscillations of contrasting non-homogeneous elastic bodies:
asymptotic and uniform estimates for eigenvalues// IMA J. Appl. Math. 2005. P. 140.
7. Golovaty Yu.D. Spectral properties of oscillatory systems with added masses// Trudy Moskov. Mat.
Obshch. 1992. V.54. P. 2972 (in Russian). English translated in Trans. Moscow Math. Soc.
1993. P. 2359.
8. Nazarov S.A. Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann
boundary conditions// RAIRO Model. Math. Anal. Numer. 1993. V.27, Ή6. P. 777799.
9. Melnyk T.A., Nazarov S.A. The asymptotic structure of the spectrum in the problem of harmonic oscillations
of a hub with heavy spokes// Dokl. Akad. Nauk of Russia. 1993. V.333, Ή1. P. 1315. (in
Russian) English translated in Acad. Sci. Dokl. Math. 1994. V.48, Ή3. P. 428432.
10. Melnyk T.A., Nazarov S.A. Asymptotic analysis of the Neumann problem in a junction of body and
heavy spokes// Algebra i Analiz. 2000. V.12, Ή2. P. 188238 (in Russian). English translated in
St. Petersburg Math. J. 2001. V.12, Ή2. P. 317351.
11. Chechkin G.A., Melnyk T.A. Asymptotics of eigenelements to spectral problem in thick cascade junction
with concentrated masses// Appl. Anal. 2011. P. 141.
12. Golovaty Yu.D., Gomez D., Lobo M., P.erez E. On vibrating membranes with very heavy thin inclusions//
Math. Models Methods. Appl. Sci. 2004. V.14, Ή7. P. 9871034.
13. Gomez D., Nazarov S.A., P.erez E. Spectral stiff problems in domains surrounded by thin stiff and heavy
bands: local effects for the eigenfunctions// Networks and heterogeneous media. 2011. V.6, Ή1.
P. 135.
14. Rybalko V. Vibrations of elastic systems with a large number of tiny heavy inclusions// Asymptotic
Analysis. 2002. V.32. P. 2762.
15. Lobo M., P.erez E. Local problems for vibrating systems with concentrated masses: a review// C. R.
Mecanique. 2003. V.331. P. 303317.
16. Golovaty Yu.D., Hut V.M. Vibrating systems with stiff light-weight inclusions: asymptotics of spectrum
and eigenspaces. (in Ukrainian, submitted for publication)
17. Babych N., Golovaty Yu.D. Quantized asymptotics of high frequency oscillations in high contrast media//
Proc. of Waves. 2007. University of Reading. P. 3537.
18. Babych N., Golovaty Yu.D. Low and high frequency approximations to eigenvibrations in a medium with
double contrasts// J. Comput. Appl. Math. 2010. V.234. P. 18601867.
19. Sylvester J., Uhlmann G. The Dirichlet to Neumann map and its applications, in inverse problems in
partial differential equations// SIAM. 1990. P. 101139.
20. Isakov V. Inverse Problems for Partial Differential Equations. Applied Mathematical Series. Berlin-
Heidelberg: Springer-Verlag, New York, 1998. V.127.
21. Fliss S. A Dirichlet-to-Neuman approach for the exact computation of guided modes in photonic crystal
waveguides// arXiv:1202.4928v1.
22. Hsiao G.C., Wendland W.L. Boundary integral equations. Appl. Math. Sci. Berlin: Springer, 2008.
V.164. 618 p.
23. Reed M., Simon B. Methods of Modern Mathematical Physics, V.1: Functional Analysis. M. Mir, 1977.
(in Russian)
24. Lazutkin V.F. Semiclassical asymptotics of eigenfunctions// Ser. Sovrem. Probl. Mat., Fundam.
Napravleniya. (Itogi Nauki Tekh.) M., 1988. V.34. P. 135174 (in Russian). English translated
in Encyclopedia of Math. Sci. V.34, Partial Differential Equations V, M.V. Fedoryuk (Editor), Springer,
New York, 1999, 133p.
|