Vibrating systems with heavy soft inclusions (in Ukrainian)

Author V. M. Hut
v.hut@ukr.net
Ivan Franko National University of Lviv

Abstract The Neumann spectral problem for an elliptic operator of the second order with singularly perturbed coefficients is considered. The asymptotic behavior of eigenvalues and eigenfunctions is studied. The problem describes the eigenmodes of a composite material with a finite number of heavy and soft inclusions. The number-by-number convergence of the eigenvalues and the corresponding eigenspaces is established. The limit eigenvalue problem involves a non-local boundary condition which arises from the non trivial coupling of the inclusions.
Keywords spectral Neumann problem; eigenvalue; eigenfunction; singular perturbation; asymptotics of spectrum; heavy inclusions
Reference 1. Marchenko V.A., Khruslov E.Ya. Homogenized Models of Microinhomogeneous Media. – Kiev, Naukova Dumka, 2005 (in Russian). English translated in Homogenization of partial differential equations, Progress in Mathematical Physics, V.46, Birkhauser, Boston, 2006.

2. Sanchez Hubert J., Sanchez Palencia E. Vibration and coupling of continuous systems. – Springer-Verlag, 1989. – 421p.

3. Oleinik O.A., Shamaev A.S., Yosifian G.A. Mathematical Problems in Elasticity and Homogenization. – North-Holland, London, 1992.

4. Zhikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of differential operators and integral functionals, Springer Verlag, Berlin, Heidelberg, NewYork, 1994.

5. Piatnitski A.L., Chechkin G.A., Shamaev A.S. Homogenization. Methods and Applications, V.234 of Translations of Mathematical Monographs, AMS, Providence, Rhode Island USA, 2007.

6. Lobo M., Nazarov S.A., P.erez E. Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues// IMA J. Appl. Math. – 2005. – P. 1–40.

7. Golovaty Yu.D. Spectral properties of oscillatory systems with added masses// Trudy Moskov. Mat. Obshch. – 1992. – V.54. – P. 29–72 (in Russian). English translated in Trans. Moscow Math. Soc. – 1993. – P. 23–59.

8. Nazarov S.A. Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions// RAIRO Model. Math. Anal. Numer. – 1993. – V.27, Ή6. – P. 777–799.

9. Melnyk T.A., Nazarov S.A. The asymptotic structure of the spectrum in the problem of harmonic oscillations of a hub with heavy spokes// Dokl. Akad. Nauk of Russia. – 1993. – V.333, Ή1. – P. 13–15. (in Russian) English translated in Acad. Sci. Dokl. Math. – 1994. – V.48, Ή3. – P. 428–432.

10. Melnyk T.A., Nazarov S.A. Asymptotic analysis of the Neumann problem in a junction of body and heavy spokes// Algebra i Analiz. – 2000. – V.12, Ή2. – P. 188–238 (in Russian). English translated in St. Petersburg Math. J. – 2001. – V.12, Ή2. – P. 317–351.

11. Chechkin G.A., Mel’nyk T.A. Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses// Appl. Anal. – 2011. – P. 1–41.

12. Golovaty Yu.D., Gomez D., Lobo M., P.erez E. On vibrating membranes with very heavy thin inclusions// Math. Models Methods. Appl. Sci. – 2004. – V.14, Ή7. – P. 987–1034.

13. Gomez D., Nazarov S.A., P.erez E. Spectral stiff problems in domains surrounded by thin stiff and heavy bands: local effects for the eigenfunctions// Networks and heterogeneous media. – 2011. – V.6, Ή1. – P. 1–35.

14. Rybalko V. Vibrations of elastic systems with a large number of tiny heavy inclusions// Asymptotic Analysis. – 2002. – V.32. – P. 27–62.

15. Lobo M., P.erez E. Local problems for vibrating systems with concentrated masses: a review// C. R. Mecanique. – 2003. – V.331. – P. 303–317.

16. Golovaty Yu.D., Hut V.M. Vibrating systems with stiff light-weight inclusions: asymptotics of spectrum and eigenspaces. (in Ukrainian, submitted for publication)

17. Babych N., Golovaty Yu.D. Quantized asymptotics of high frequency oscillations in high contrast media// Proc. of Waves. – 2007. – University of Reading. – P. 35–37.

18. Babych N., Golovaty Yu.D. Low and high frequency approximations to eigenvibrations in a medium with double contrasts// J. Comput. Appl. Math. – 2010. – V.234. – P. 1860–1867.

19. Sylvester J., Uhlmann G. The Dirichlet to Neumann map and its applications, in inverse problems in partial differential equations// SIAM. – 1990. – P. 101–139.

20. Isakov V. Inverse Problems for Partial Differential Equations. Applied Mathematical Series. – Berlin- Heidelberg: Springer-Verlag, New York, 1998. – V.127.

21. Fliss S. A Dirichlet-to-Neuman approach for the exact computation of guided modes in photonic crystal waveguides// arXiv:1202.4928v1.

22. Hsiao G.C., Wendland W.L. Boundary integral equations. Appl. Math. Sci. – Berlin: Springer, 2008. – V.164. – 618 p.

23. Reed M., Simon B. Methods of Modern Mathematical Physics, V.1: Functional Analysis. – M. Mir, 1977. (in Russian)

24. Lazutkin V.F. Semiclassical asymptotics of eigenfunctions// Ser. Sovrem. Probl. Mat., Fundam. Napravleniya. (Itogi Nauki Tekh.) – M., 1988. – V.34. – P. 135–174 (in Russian). English translated in Encyclopedia of Math. Sci. – V.34, Partial Differential Equations V, M.V. Fedoryuk (Editor), Springer, New York, 1999, 133p.

Pages 162-176
Volume 38
Issue 2
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML