Reference |
1. L.A. Rubel, B.A. Taylor, Fourier series method for meromorphic and entire functions, Bull. Soc. Math.
France., 96 (1968), 53–96.
2. J.B. Miles, Quotient representations of meromorphic functions, J. d'Analyse Math., 25 (1972), 371–388.
3. A.A. Kondratyuk, The Fourier series method for entire and meromorphic functions of completely regular
growth, Mat. Sb., 106(148) (1978), ¹3(7), 386–408; English transl. in Math. USSR-Sb., 35 (1979), ¹1,
63–84.
4. A.A. Kondratyuk, The Fourier series method for entire and meromorphic functions of completely regular
growth. II, Mat. Sb., 113(155) (1980), ¹1(9), 118–132; English transl. in Math. USSR-Sb., 41 (1982),
¹1, 101–113.
5. A.A. Kondratyuk, The Fourier series method for entire and meromorphic functions of completely regular
growth. III, Mat. Sb., 120(162) (1983), ¹3, 331–343; English transl. in Math. USSR-Sb., 48(1984), ¹3,
327–338.
6. P. Noverraz, Fonctions plurisousharmoniques et analtiques dans les espaces vectoriels topologiques
complexes, Ann. Inst. Fourier, 19 (1969), ¹2, 419–493.
7. K.G. Malyutin, Fourier series and $\delta$-subharmonic functions, Trudy Inst. Problem Mat. Mekh. Akad.
Nauk Ukr., 3 (1998), 146–157. (in Russian)
8. K.G. Malyutin, Fourier series and $\delta$-subharmonic functions of finite
$\gamma$-type in a half-plane, Mat. Sb.,
192 (2001), ¹6, 51–70; English transl. in Sb. Math., 192 (2001), ¹6, 843–861.
9. B.N. Khabibullin, Growth of entire functions with given zeros and representation of meromorphic functions,
Mathematical Notes, 73 (2003), ¹1–2, 110–124. (in Russian)
10. Yu.S. Protsyk, Subharmonic functions of finite $(\gamma,\varepsilon)$-type, Mat. Stud., 24 (2005), ¹1, 39–56.
11. A.F. Grishin, Continuity and asymptotical continuity of subharmonic functions, Mathematical Physics,
Analysis and Geometry, 1 (1994), ¹2, 193–215. (in Russian)
12. N.I. Ahiezer, Elements of the theory of elleptic functions, Nauka, Moscow, 1970; English transl., Amer.
Math. Soc., Providence, RI, 1990.
|