|
The angular value distribution of analytic and random analytic
functions (in Ukrainian) |
Author |
M. P. Mahola, P. V. Filevych
marichka_stanko@ukr.net, filevych@mail.ru
²íñòèòóò ïðèêëàäíèõ ïðîáëåì ìåõàí³êè ³ ìàòåìàòèêè ³ì. ß. Ñ. ϳäñòðèãà÷à ÍÀÍ Óêðà¿íè,
Ïðèêàðïàòñüêèé íàö³îíàëüíèé óí³âåðñèòåò ³ì. Â. Ñòåôàíèêà
|
Abstract |
Let $a\in\mathbb{C}$, $f(z)=\sum c_nz^n$ be an analytic function in the disk $|z|<1$ such that $S_f(r){:=}\left(\sum |c_n|^2r^{2n}\right)^{\frac12}\to+\infty$, $r\to1$, $N_f(r,\alpha,\beta,a)$ be the integrated counting function of $a$-points of $f$ in the sector $0<|z|\le r$, $\alpha\le\arg_{\alpha} z<\beta$, $N_f(r,a)=N_f(r,0,2\pi,a)$, and $E\subset(0,1)$ be a set such that $\sup E=1$. It is proved that if $N_{f}(r,a)\sim\ln S_{f}(r)$, $E\ni r\to1$, then $N_{f}(r,\alpha,\beta,a)\sim\frac{\beta-\alpha}{2\pi}\ln S_{f}(r)$, $E\ni r\to1$, uniformly in $\alpha<\beta\le\alpha+2\pi$. |
Keywords |
value distribution, analytic function; random analytic function; integrated counting function; angular integrated counting function |
Reference |
1. Hayman W.K. Meromorphic functions. – Oxford: Clarendon Press, 1964.
2. Goldberg A.A., Ostrovskii I.V. Value distribution of meromorphic functions. – Transl. Math. Monogr.,
V.236. – Providence, R.I.: Amer. Math. Soc., 2008.
3. Sheremeta M.M., Zabolotskii N.V. On the slow growth of the main characteristics of entire functions//
Math. Notes. – 1999. – V.65, ¹2. – P. 168–174.
4. Mahola M.P., Filevych P.V. The angular value distribution of random analytic functions// Mat. Stud. –
2012. – V.37, ¹1. – P. 34–51.
5. Hayman W.K., Rossi J.F. Characteristic, maximum modulus and value distribution// Trans. Amer. Math.
Soc. – 1984. – V.284, ¹2. – P. 651–664.
6. Hayman W.K. Angular value distribution of power series with gaps// Proc. London Math. Soc. – 1972.
– V.24, ¹3. – P. 590–624.
7. Levin B.Ja. Lectures on entire functions. – Transl. Math. Monogr., V.150. – Providence, R.I.: Amer.
Math. Soc., 1996.
8. Kahane J.-P. Some Random Series of Functions. – Cambridge: Cambridge University Press, 1994.
9. Offord A.C. The distribution of the values of a random function in the unit disk// Studia Math. – 1972. –
V.41. – P. 71–106.
10. Mahola M.P., Filevych P.V. The value distribution of a random entire function// Mat. Stud. – 2010. –
V.34, ¹2. – P. 120–128.
11. Mahola M.P., Filevych P.V. The angular distribution of zeros of random analytic functions// Ufa Math. J.
– 2012. – V.4, ¹1. – P. 116–128.
12. Mahola M.P., Filevych P.V. The value distribution of random analytic functions// Math. Bull.
Shevchenko Sci. Soc. – 2012. – V.9. – P. 180–215. (in Ukrainian)
|
Pages |
147-153 |
Volume |
38 |
Issue |
2 |
Year |
2012 |
Journal |
Matematychni Studii |
Full text of paper |
PDF |
Table of content of issue |
HTML |