On H1-compositors and piecewise continuous mappings (in Ukrainian)

Author O. O. Karlova, O. V. Sobchuk
Maslenizza.ua@gmail.com
×åðí³âåöüêèé óí³âåðñèòåò ³ìåí³ Þð³ÿ Ôåäüêîâè÷à

Abstract We introduce the notion of a right $H_1$-compositor and prove that for a hereditarily Baire metrizable space $X$, a normal space $Y$ and a mapping $f\colon X\to Y$ the following conditions are equivalent: (i) $f$ is piecewise continuous; (ii) $f$ is $k$-continuous; (iii) $f$ is $G_\delta$-measurable; if, moreover, $Y$ is perfect, then (i)--(iii) are equivalent to: (iv) $f$ is a right $H_1$-compositor.
Keywords right $H_1$-compositor; right $B_1$-compositor; mapping of the first Lebesgue class; $G_\delta$-measurable mapping; piecewise continuous mapping; $k$-continuous mapping; weakly $k$-continuous mapping
Reference 1. Peng-Yee Lee, Wee-Kee Tang, Dongsheng Zhao, An equivalent definition of functions of the first Baire class, Proc. Amer. Math. Soc., 129 (2000), ¹8, 2273–2275.

2. J. Jachymski, M. Lindner, S. Lindner, On Cauchy type characterizations of continuity and Baire one functions, Real Anal. Exchange, 30 (2004/05), ¹1, 339–346.

3. D. Lecomte, How we can recover Baire class one functions? Mathematika, 50 (2003), ¹1-2, 171–198.

4. D.N. Sarkhel, Baire one functions, Bull. Inst. Math. Acad. Sinica, 31 (2003), ¹2, 143–149.

5. D. Zhao, Functions whose composition with Baire class one functions are Baire class one, Soochow J. Math., 33 (2007), ¹4, 543–551.

6. K. Kuratowski, Topology, V.1, New York, London, Warszawa, 1966.

7. R. Hansell, Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc., 161 (1971), 145–168.

8. L. Vesel.y, Characterization of Baire-one functions between topological spaces, Acta Univ. Carol., Math. Phys., 33 (1992), ¹2, 143–156.

9. O.O. Karlova, The decomposable and the ambiguous sets, Carpathian Math. Publications, 3 (2011), ¹2, 71–76. (in Ukrainian)

10. T. Banakh, B. Bokalo, On scatteredly continuous maps between topological spaces, Topology Appl., 157 (2010), ¹1, 108–122.

Pages 139-146
Volume 38
Issue 2
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML