Reference |
1. M. Ajtai, I. Havas, J. Koml.os, Every group admits a bad topology, Stud. Pure Math., Memory of P.
Turan, Basel–Boston, 1983, 21–34.
2. D.L. Armacost, The structure of locally compact Abelian groups, Monographs and Textbooks in Pure
and Applied Mathematics, 68, Marcel Dekker, Inc., New York, 1981.
3. G. Barbieri, D. Dikranjan, C. Milan, H.Weber, Answer to Raczkowski’s question on convergent sequences
of integers, Topology Appl., 132 (2003), 89–101.
4. G. Barbieri, D. Dikranjan, C. Milan, H. Weber, Topological torsion related to some sequences of integers,
Math. Nachr., 281 (2008), ¹7, 930–950.
5. W.W. Comfort, Problems on Topological Groups and Other Homogeneous Spaces, Open problems in
topology, 314–347, North-Holland, 1990.
6. W.W. Comfort, S.U. Raczkowski, F. Trigos-Arrieta, Making group topologies with, and without,
convergent sequences, Applied General Topology, 7 (2006), ¹1, 109–124.
7. D. Dikranjan, C. Milan, A. Tonolo, A characterization of the maximally almost periodic Abelian groups,
J. Pure Appl. Algebra, 197 (2005), 23–41.
8. S.S. Gabriyelyan, On T-sequences and characterized subgroups, Topology Appl., 157 (2010), 2834–2843.
9. S.S. Gabriyelyan, Characterization of almost maximally almost-periodic groups, Topology Appl., 156
(2009), 2214–2219.
10. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, V.I, 2nd ed. Springer-Verlag, Berlin, 1979.
11. G. Luk.acs, Almost maximally almost-periodic group topologies determined by T-sequences, Topology
Appl., 153 (2006), 2922–2932.
12. J. von Neumann, Almost periodic functions in a group, Trans. Amer. Math. Soc., 36 (1934), 445–492.
13. N. Noble, k-groups and duality, Trans. Amer. Math. Soc., 151 (1970), 551–561.
14. I.V. Protasov, Review of Ajtai, Havas and J. Komlos, Zentralblatt fur Matematik, 535 (1983), 93.
15. I.V. Protasov, E.G. Zelenyuk, Topologies on abelian groups, Math. USSR Izv., 37 (1991), 445–460.
Russian original: Izv. Akad. Nauk SSSR, 54 (1990), 1090–1107.
16. I.V. Protasov, E.G. Zelenyuk, Topologies on groups determined by sequences, Monograph Series, Math.
Studies VNTL, Lviv, 1999.
|