|
|
Prethick subsets and partitions of metric spaces |
| Author |
K. D. Protasova
islab@unicyb.kiev.ua
Department of Cybernetics, Kyiv University
|
| Abstract |
A subset $A$ of a metric space $(X,d)$ is called thick if, for every
$r>0$, there is $a\in A$ such that $B_{d}(a,r)\subseteq A,$ where
$B_{d}(a,r)=\{x\in X\colon d(x,a)\leq r\}$. We show that if $(X, d)$ is
unbounded and has no asymptotically isolated balls then, for each
$r>0$, there exists a partition $X=X_{1}\cup X_{2}$ such that
$B_{d}(X_{1},r)$ and $B_{d}(X_{2},r)$ are not thick. |
| Keywords |
metric space; thick and prethick subsets; asymptotically
isolated balls |
| DOI |
doi:10.30970/ms.38.2.115-117
|
| Reference |
1. T. Banakh, I.V. Protasov, S. Slobodianiuk, Subamenable groups and their partitions, preprint (http://
arxiv.org/abs/1210.5804).
2. T. Banakh, I. Zarichnyi, The coarse characterization of homogeneous ultrametric space, Groups, Geometry
and Dynamics, 5 (2011), 691–728.
3. I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser.,
V.11, VNTL Publisher, Lviv, 2003.
4. I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser. V.12, VNTL Publisher, Lviv,
2007.
|
| Pages |
115-117 |
| Volume |
38 |
| Issue |
2 |
| Year |
2012 |
Journal |
Matematychni Studii |
| Full text of paper |
PDF |
| Table of content of issue |
HTML |