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A subset A of a metric space (X, d) is called thick if, for every r > 0, there is a € A such that
Bg(a,r) C A, where By(a,r) = {zr € X: d(z,a) < r}. We show that if (X, d) is unbounded and
has no asymptotically isolated balls then, for each r > 0, there exists a partition X = X; U X,
such that Bg(X7,7) and Bg(X2,r) are not thick.
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[MopmuOKecTBO A MeTpryueckoro npocrpancTsa (X, d) Ha3bIBAETCs TOJCTBIM, €CJIU JIJIsl JIIO-
Goro r > 0 cymecrByer ssementT a € A rtakoif, uro Bg(a,r) C A, rme By(a,r) = {x € X:
d(z,a) < r}. Jokazano, 4ro ecau (X,d) HEOrpAHUYECHHO U HE UMEET ACUMITOTUIECKU H30-
JINDOBAHHBIX MIAPOB, TO Jjis jioboro r > 0 cymecrByer pasdouenne X = X; U Xs Takoe, 4to
noxmuoKecTBa By(X1,7) u By(Xa,r) He SIBISIOTCH TOJICTBIMH.

Given a metric space (X,d) and x € X, AC X, r e R, R" = {r e R: r > 0} let

B(z,r) ={y € X:d(z,y) <r}, B(A,r)= U B(a,r).

a€A

A subset A of X is called

large it X = B(A,r) for some r € R*;

small if L'\ A is large for each large subset L;

thick if, for each r € R™, there is a € A such that B(a,r) C A;
r-prethick if B(A,r) is thick;

prethick if A is r-prethick for some r € R*.

We note that A is small if and only if A is not prethick, A is thick if and only if X \ A is
not large. If X is bounded (i.e., X = B(x,r) for some z € X and r € R"), each nonempty
subset of X is large and prethick, if A is thick then A = X.

In what follows, all metric spaces are supposed to be unbounded.

By [2, Theorem 11.2|, the family of all small subsets of X is an ideal in the Boolean
algebra of all subsets of X. It follows that if X is finitely partitioned X = X; U...U X, then
at least one of the cells X; is prethick.

In this note, we give a complete answer to the following question: Given a metric X and
n € N, does there exist r = r(X,n), r € R such that, for each n-partition of X, at least
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one of the partition cells is r-prethick? An analogous problem in the realm of G-spaces and
groups was considered in [1].

We use the following definition from [2]. For » > 0, a metric space X has isolated r-balls
if, for each t > r, there is x € X such that B(z,t)\B(z,r) = @. If X has asymptotically
isolated r-balls for some r > 0, we say that X has asymptotically isolated balls.

A partition X = X; U---U X, is called r-meager, if each cell X; is not r-prethick.

Theorem 1. For a metric space X, the following statements hold:

(i) if X has asymptotically isolated r-balls, then for any n-partition X = X; U---U X,
at least one of the cells X; is r-prethick;

(ii) if X has no asymptotically isolated balls, then for each r > 0, there exists an r-meager
2-partition of X.

Proof. (i) We choose a sequence (2, )ne,, in X and an increasing sequence (ky, )newn of positive
integers such that B(x,, k,)\ B(z,,r) = &. Then we pick a cell X; of the partition containing
infinitely many members of (2,,)new, and note that B(X;,r) is thick.

(ii)) We take t > 2r such that B(z,t) \ B(z,2r) # @ for each x € X. Using the Zorn
lemma, we choose a subset Y C X such that

(1) B(y,t)N B(y',t) = @ for all distinct y,y" € Y;
(2) for each x € X, there is y € Y such that B(z,t) N B(y,t) # @.

We put Xy = UyeyB(y,r), Xo = X \ Xi. By (1), (2) and the choice of ¢, the subsets
X\ B(X1,r) and X \ B(Xy,r) are large. Hence, X; and X, are not r-prethick. O

Remark 1. A metric space (X, d) is called coarsely geodesic if there are ¢ > 0 and a function
f:]0,00) — N such that any points x,y € X can be linked by a sequence of points x =
Zoy ..., T, =y of length n < f(d(z,y)) such that d(x;,x;41) < € for all i < n.

Each connected graph with the set of vertices V' can be considered as a coarsely geodesic
metric space (V,d), where d is the path metric on V. By [4, 5.1.1], each coarsely geodesic
metric space is coarsely equivalent to some connected graph.

It is easy to see that a coarsely geodesic metric space (X,d) has no asymptotically
isolated balls, but in the proof of (ii) the corresponding subsets X, X5 can be chosen more
constructively. We fix zy € X, take an arbitrary s > r + ¢, ¢ is chosen from the definition of
a geodesic space, and put

X1 = J(B(z0,25 + 1) \ B(x,25)), Xa =X\ X,

SEw

Remark 2. We can generalize Theorem for balleans instead of metric spaces. Recall [4] that
a ball structure B is a triple (X, P, B), where X, P are non-empty sets and, for every x € X
and a € P, B(z,«) is a subset of X which is called a ball of radius o around x. The set X
is called the support of B, P is called the set of radii.

Givenany r € X, A C X, a € P, we put

B*(z,a)={ye X:xz € B(y,a)}, B(4,a) = U B(a, a).

a€A

A ball structure B is called a ballean if
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e Va,fe P33/, € PVa e X(B(z,a) C B*(z,d/) and B*(z, ) C B(z,));
e Va,f € PIye PVae X(B(B(z,a),B) C B(z,7)).

A ballean B is connected (bounded) if for any z,y € X there is a € P such that y € B(z, «)
(X = B(x,«) for some z € X, o € P).

We use a natural preordering o on P defined by a < g if B(x,«) C B(z, ) for every
r e X.

Each metric space (X, d) defines the ballean (X,R*, B, ). Clearly, all the definitions from
this note can be literally rewritten for balleans instead of metric spaces. Moreover, the same
can be done with the proof of Theorem 1 for all connected unbounded balleans.
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