Asymptotic approximation of a solution of a quasilinear parabolic boundaryvalue problem in a two-level thick junction of type 3:2:2

Author D. Yu. Sadovyj
sadovyj@univ.kiev.ua
Taras Shevchenko Kyiv National University

Abstract We consider a quasilinear parabolic boundary-value problem in a two-level thick junction $\Omega_\varepsilon$ of type $3:2:2$, which is the union of a cylinder $\Omega_0$ and a large number of $\varepsilon$-periodically situated thin discs with variable thickness. Different Robin boundary conditions with perturbed parameters are given on the surfaces of the thin discs. The leading terms of the asymptotic expansion are constructed and the corresponding estimate in Sobolev space is obtained.
Keywords homogenization; quasilinear problem; parabolic problem; asymptotic approximation; thick junction
Reference 1. D. Blanchard, A. Gaudiello, T.A. Mel’nyk, Boundary Homogenization and Reduction of Dimension in a Kirchhoff-Love Plate, SIAM Journal on Mathematical Analysis, 39 (2008), ¹6, 1764–1787.

2. D. Blanchard, A. Gaudiello, J. Mossino, Highly Oscillating Boundaries and Reduction of Dimension: the Critical Case, Analysis and Application, 5 (2007), 137–163.

3. D. Blanchard, A. Gaudiello, G. Griso, Junction of a Periodic Family of Elastic Rods with 3d Plate, J. Math. Pures Appl., 88 (2007), ¹9, 1–33 (Part I); J. Math. Pures Appl., 88 (2007), ¹9, 149–190 (Part II).

4. G.A. Chechkin, T.A. Mel’nyk, Asymptotics of Eigenelements to Spectral Problem in Thick Cascade Junction with Concentrated Masses, Applicable Analysis; http:// www.tandfonline.com/doi/abs/DOI: 10.1080/00036811.2011.602634.

5. C. D’Apice, U. De Maio, T.A. Mel’nyk, Asymptotic Analysis of a Perturbed Parabolic Problem in a Thick Junction of Type 3:2:2, Networks and Heterogeneous Media, 2 (2007), .2, 255–277.

6. U. De Maio, T.A. Mel’nyk, Asymptotic Solution to a Mixed Boundary-Value Problem in a Thick Multi- Structure of Type 3:2:2, Ukrainian Mathematical Bulletin, 2 (2005), ¹4, 467–485.

7. U. De Maio, T. Durante, T.A. Mel’nyk, Asymptotic Approximation for the Solution to the Robin Problem in a Thick Multi-Level Junction, Mathematical Models and Methods in Applied Sciences, (M3AS), 15 (2005), ¹12, 1897–1921.

8. T. Durante, T.A. Mel’nyk, Asymptotic Analysis of a Parabolic Problem in a Thick Two-Level Junction, Journal of Math. Physics, Analysis, Geometry, 3 (2007), ¹3, 313–341.

9. H. Gaevsky, K. Greger, K. Zakharias, Nonlinear Operator Equations and Operator Differential Equations, Mir, Moscow, 1975. (in Russian)

10. E.Ya. Khruslov, On the Resonance Phenomenas in One Problem of Diffraction, Teor. Funkts., Funkts. Anal. i Prilozhen, 10 (1968), 113–120. (in Russian)

11. V.P. Kotliarov, E.Ya. Khruslov, On a Limit Boundary Condition of Some Neumann Problem, Teor. Funkts., Funkts. Anal. i Prilozhen, 10 (1970), 83–96. (in Russian)

12. Y.I. Lavrentovich, T.V. Knyzkova, V.V. Pidlisnyuk, The Potential of Application of New Nanostructural Materials for Degradation of Pesticides in Water, Proceedings of the 7th International HCH and Pesticides Forum “Towards the establishment of an obsolete POPS/pecticides stockpile fund for Central and Eastern European countries and new independent states” (Kyiv, June 5–7, 2003), (2003), 167–169.

13. M. Lenczner, Multiscale Model for Atomic Force Microscope Array Mechanical Behavior, Applied Physics Letters, 90 (2007), 901–908.

14. S.E. Lyshevshi, Mems and Nems: Systems, Devices, and Structures, CRC Press, Boca Raton, FL, 2002.

15. V.A. Marchenko, E.Ya. Khruslov, Boundary Value Problems in Domains with Finegrained Boundary, Naukova Dumka, Kiev, 1974. (in Russian)

16. T.A. Mel’nik, P.S. Vashchuk, Homogenization of a Boundary-Value Problem with Mixed Type of Boundary Conditions in a Thick Junction, Partial Differential Equations, 43 (2007), ¹5, 677–684.

17. T.A. Mel’nyk, S.A. Nazarov, The Asymptotic Structure of the Spectrum in the Problem of Harmonic Oscillations of a Hub with Heavy Spokes, Russ. Acad. Sci. Dokl. Math., 48 (1994), ¹3, 428–432.

18. T.A. Mel’nyk, S.A. Nazarov, Asymptotics of the Neumann Spectral Problem Solution in a Domain of “Thick Comb”, Tr. Sem. im. I.G. Petrovskogo, 19 (1996), 138–174. (in Russian)

19. T.A. Mel’nyk, Homogenization of the Poisson Equation in a Thick Periodic Junction, Zeitschrift f.ur Analysis und ihre Anwendungen, 18 (1999), ¹4, 953–975.

20. T.A. Mel’nyk, S.A. Nazarov, Asymptotic Analysis of the Neumann Problem of the Junction of a Body and Thin Heavy Rods, St.-Petersburg Math. J., 12 (2001), ¹2, 317–351.

21. T.A. Mel’nyk, Homogenization of a Singularly Perturbed Parabolic Problem in a Thick Periodic Junction of the Type 3:2:1, Ukr. Math. J., 52 (2000), ¹11, 1737–1748.

22. T.A. Mel’nyk, Homogenization of a Boundary-Value Problem with a Nonlinear Boundary Condition in a Thick Junction of Type 3:2:1, Math. Models Meth. Appl. Sci., 31 (2008), 1005–1027.

23. T.A. Mel’nyk, G.A. Chechkin, Homogenization of a Boundary-Value Problem in a Thick 3-dimensional Multi-Level Junction, Russian Academy of Sciences. Sbornik. Mathematics, 200 (2009), ¹3, 357–383.

24. T.A. Mel’nyk, D.Yu. Sadovyj, Homogenization of Quasilinear Parabolic Problem with Various Alternating Nonlinear Fourier Boundary Conditions in a Two-Level Thick Junction of Type 3:2:2, Ukr. Math. J., 63 (2012), ¹12.

25. T.A. Mel’nyk, D.Yu. Sadovyj, Homogenization of Quasilinear Parabolic Problems with alternating nonlinear Fourier and Uniform Dirichlet Boundary Conditions in a Thick Two-Level Junction of Type 3:2:2, Mat. Visnyk NTSh, 7 (2011), 115–136. (in Ukrainian)

26. T.A. Mel’nyk, O.A. Sivak, Asymptotic Analysis of a Parabolic Semilinear Problem with Nonlinear Boundary Multiphase Interactions in a Perforated Domain, J. Math. Sci., 164 (2010), ¹3, 427–454.

27. S.A. Nazarov, Junctions of Singularly Degenerating Domains with Different Limit Dimension, Tr. Sem. im. I. G. Petrovskogo, 18 (1995), 1–78 (Part I); Tr. Sem. im. I. G. Petrovskogo, 20 (2000), 155–196 (Part II). (in Russian)

28. S.A. Nazarov, The Polynomial Property Selfadjoint Elliptic Boundary-Value Problems and Algebraic Description Their Atributes, Usp. Mat. Nauk, 54 (1999), ¹5, 77–142. (in Russian)

29. S.A. Nazarov, B.A. Plamenevskii, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, 1994

Pages 51-67
Volume 38
Issue 1
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML