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ASYMPTOTIC APPROXIMATION OF A SOLUTION OF
A QUASILINEAR PARABOLIC BOUNDARY-VALUE PROBLEM
IN A TWO-LEVEL THICK JUNCTION OF TYPE 3:2:2

D. Yu. Sadovyj. Asymptotic approximation of a solution of a quasilinear parabolic boundary-
value problem in a two-level thick junction of type 8:2:2, Mat. Stud. 38 (2012), 51-67.

We consider a quasilinear parabolic boundary-value problem in a two-level thick junction €2,
of type 3 : 2 : 2, which is the union of a cylinder 2y and a large number of e-periodically
situated thin discs with variable thickness. Different Robin boundary conditions with perturbed
parameters are given on the surfaces of the thin discs. The leading terms of the asymptotic
expansion are constructed and the corresponding estimate in Sobolev space is obtained.

. 1O. Capopoit. Acumnmomuueckas annpokcuMayus PEWEeHU KEA3UIMHETHOT Napabosuse-
ckotll kKpaesoti 3adavy 6 d8YTYposHesom 2ycmom coedunenun muna 3:2:2 // Mar. Crynii. — 2012.
— T.38, Nel. — C.51-67.

PaccmarpuBaercs kBasuinHeitHas mapaboIndIecKas KpaeBas 3aa49a B IBYXYPOBHEBOM TI'yC-
TOM coemuHeHun ). Tuna 3 : 2 : 2, KOTOPOe COCTOUT U3 MUIHHAPA 29 U GOJIBIIOr0 KOJUIECTBA
E-TIEPUONTECKN TTPUCOEINHEHHBIX TOHKUX JIUCKOB MEpPEeMEHHON ToJmuHabl. Ha moBepxHOCTIX
TOHKHUX JINCKOB M3 00EUX ypPOBHEH 33/1aI0TCs Pa3Hble KPAEBbIE YCJOBHUS TPETHETO POJIA C BO3-
MyIeHHbIMU KO3ddunmerTamu. CTposiTCs TJIaBHBIE YJIEHBI ACUMIITOTHIECKOrO Pa3JI0XKEeHUsT U
JIOKA3BbIBAETCsT COOTBETCTBYIOIIAs OIleHKa B mpocTpancTe Cobosiena.

1. Introduction. A thick junction of type m : k : d is a union of some domain, which is
called the junction’s body, and a large number of e-periodically alternating thin domains,
which are attached to some manifold (the joint zone) on the boundary of the junction’s
body. The small parameter ¢ characterizes the distance between neighboring thin domains
and their thickness. The type m : k : d of a thick junction refers, respectively, to the limiting
dimensions (as € — 0) of the junction’s body, the joint zone and each of the attached thin
domains. The subject of the investigation of boundary-value problems in thick junctions is
the asymptotic behavior of solutions of such problems as ¢ — 0, i.e. as the number of the
attached thin domains infinitely increases as well as their thickness tends to zero.

The first researches in this direction were carried out in [10, 11, 15], where convergence
theorems for the Green function of the Neumann problem for the Helmholz equation in the
junction’s body were proved. In these papers either the assumption about the convergence of
certain components of the boundary-value problem was made, or explicit representations of
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certain quantities were used, which was possible under certain configurations of the junction’s
body (the half-space). In [17]-[21], [27] thick junctions were classified, asymptotic methods
for the investigation of main boundary-value problems of mathematical physics in thick
junctions of different types were developed, convergence theorems were proved, the first terms
of asymptotic expansions were constructed, and the corresponding estimates were proved. It
was shown that qualitative properties of solutions essentially depend on the junction’s type
and the conditions given on the boundaries of the attached thin domains (see also [1, 3, 23]).

As an extension of the investigation, in papers |7, 8, 16] thick junctions of more compli-
cated geometric structure were considered, namely multi-level thick junctions. A multi-level
thick junction is a thick junction in which thin domains are divided into finitely many levels
depending on their geometric structure and boundary conditions imposed on their surfaces.
Besides, thin domains from each level e-periodically alternate along the joint zone. In these
papers linear boundary-value problems in thick junctions of types 2 : 1 : 1 and 3 : 2 : 1
were considered. Moreover, there a new qualitative difference in the asymptotic behavior of
solutions of boundary-value problems in multi-level thick junctions was noticed, namely the
“multi-phase” effect in the domain that is filled up simultaneously by the thin domains from
different levels.

The successful applying in nanotechnology and microelectronics of constructions, which
have form of thick junctions (see [12|-[14]), has lead to effective studying of boundary-value
problems in thick junctions of various types and more complicated structure (see also [1]-]4],
[22, 23]).

In the present paper we consider quasilinear parabolic boundary-value problem in a two-
level thick junction of type 3 : 2 : 2, which consists of a cylinder €y and a large number of
thin annular discs with varying thickness, which are e-periodically attached to €)y. Different
nonhomogeneous Robin boundary conditions are given on the surfaces of the thin discs
from various levels. The leading terms of the asymptotic expansion for a solution of this
problem are constructed and the asymptotic estimate in Sobolev space is proved. It should
be noted that linear parabolic boundary-value problems in thick junctions of various types
were investigated in [5, 8]. Quasilinear parabolic problems in a two-level thick junction of
type 3 : 2 : 2 were considered in |24, 25|, where only convergence theorems were proved.

2. Statement of the problem. Let 0 < dy < dy < d; and 0 < by < b; < 1, and let
hi: [do,d;] — (0,1), ¢ € {1,2} be piecewise smooth functions. Suppose that functions h;
satisfy the following conditions

hi(s) hi(s) ha(s)

2 ’bi+T<]‘V86[d07di]viE{1;2} b2+T<b1—

These inequalities imply that for all s € [do,d;] the intervals I;(s):=(b; — hi(s)/2,b; +
hi(s)/2), i € {1,2}, belong to the interval (0, 1), having no common points and do not
adjoin.

We additionally assume that the functions hq, hy are constant in some neighborhood of d,
i.e. there exists 6 > 0 such that h;(s) = h;(dp) for all s € [dy,dy + 9], i € {1,2}.

Consider a model thick junction €. of type 3 : 2 : 2 (see Fig. 1) that consists of the
cylinder Qg = {z = (71, 22,73) € R®: 0 < @y < I, r:i=+/2? + 22 < dy} and 2N thin annular
discs

th(S) Vs € [do,dQ].

GO () = {z e R®: |2y — e(j + b)| < eha(r)/2, do <7 < dy},

£

GE:Q)(]) = {JJ S ]RSZ ’1’2 — 5(] —+ b2)| < 6h2<7’)/2, do <r< dg},
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dy )
dy

do

0 # .

Fig. 1: The cross-section of thick junction €. of type 3:2:2 (N = 8).

where j € {0,1,...,N — 1}, ¢ = I/N, ie. Q. = QUG,, G. = GP uc?, ¢V =
U;y:_OlGél)(j), GP = N 1G(Q)( ). Here N is a large integer. Therefore, € is a small parameter,
which characterizes the distance between neighboring thin discs and their thickness.
Denote by Se(l) and 55(2) the union of the lateral surfaces of the thin discs of the first and
the second levels, respectively, and by S the union of the bases of the cylinder €, i.e.
SD:={2 € GV |zy — e(j 4+ b;)| = ehi(r)/2, j € {0,1,...,N =1}, 7 € (do, d;)}, i€{1,2},
72{1‘68903%2:0}, S+:{x€890:x2:l}, S:S+Usi.

We introduce the following notation

ﬁizﬁoUEi, Di:{xeRgi 0<ao <, d0<r<di}> [AS {1’2}7
Qéz) = {$ S an T = dz}a i € {07 172}7 QS) = {iL‘ € aGS) r= d’}’ U = {1’2}’
1O = $OUQY, 81 = G NN, i€ {1,2}, 6. =0 U, QU ="\ 6..

In the thick junction §2. we consider the quasilinear parabolic boundary-value problem

(Oyuc(z,t) — Aguc(z, ) + Vo(uc(z, 1)) = fo(,t), (x,t) € Q x (0,T),

Oyue(z,t) + e (ue(m, 1)) = ePg.(z, 1), (x,t) € S (0,7),

Ayuc(z,t) + V1 (ua(z, 1)) = 0, (z,t) € QY x (0,T),
Dyuc(z,t) + ¢ ﬁg(ua(az t)) = ePg.(, ), (z,t) € T& % (0,T), )
dyuc(z,t) = (z,1) € Q¥ x (0,T),
8§2u5(x,t)| = 0P u.(z, t)]5+, p=0,1,t€ (0,7),

[UaHr:dO [Orue]|,.— do — (z,t) € ©: x (0,T),
[ u(z,0) =0, x € Q..

Here 0, = 0/0v is the outward normal derivative; a, f > 1 are parameters; the square
brackets denote the jump of enclosed quantities. For the right-hand sides of problem (1)
we assume that f. € L*(Q. x (0,7T)), g. € L*(Dy x (0,T)), there exists a weak derivative
O2,9- € L*(Dy x (0,T)), and

HC() >0 360 >0 Vec (0,80): ||gg||L2(D1><(O7T)) + ||ax2g5||L2(D1X(O,T)) < Co.
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The functions ¥; are Lipschitz-continuous (that is to say 9; € W-°(R)) and

loc

Jeg,e0 > 0001 <I(s) <y forae seR, ie€{0,1,2}. (2)

Consider the spaces H, = {¢ € H*(): plg- = ¢|s+} and W, = {p € L*(0,T; H.):
Owp:=¢' € L*(0,T; H?)}.

It is known (see, for instance, |9, §1 ch. IV]) that W. C C([0, T]; L*(Q)).

A function u. € L?(0,T; H.) is a weak solution of problem (1) if for every function ¢ € W.
the following integral identity holds (see, e.g., [9, ch. IV])

T T
/ us(x, T)p(x, T)dx — / / u:Oppdxdt + / / (Vaue - Voo + Yo(ue)p)dadt
Qe 0 < 0 e

T T T
+6/ / V1 (ue)pdo,dt +/ / W1 (ue)pdodt + 60‘/ / Vs (ue)pdo,dt
0 JstY o JoV o Jr®

T T
= / fopdadt + €° / / g-pdo,dt. (3)
0 Ja. 0o JsWur®

Similarly as in [26] we can show that for any fixed ¢ > 0 there exists a unique weak
solution of problem (1).

The aim is to study the asymptotic behavior of the solution of problem (1) as ¢ — 0,
i.e. as the number of the attached thin discs infinitely increases and their thickness tends to
Zero.

3. Formal Asymptotic Expansions for the Solution. In this section only, for formal
calculations we assume that the functions f;, g. do not depend on ¢, i.e. f. = fo in £y X (0,7)
and g. = go on Dy x (0,7, and they are smooth in €; x [0,7] and D; x [0, T, respectively.

3.1. Outer Expansions. We seek the leading terms of the asymptotic expansion for solu-
tion wu,, restricted to €2, in the form

ue(w, t) ~ uf (2, t) + Y efuf (z,t) € Qo x (0,T), (4)

k>1

and, restricted to the thin discs G (7), 7 €40,1,...,N — 1}, in the form

ue(w,t) mug (2,t) + Y efuy (1,6 —4it),  (x,t) € GYV(j) x (0,T), ie{l,2}, (5)

k>1

where & = xa/e.
Expansions (4) and (5) are usually called outer expansions.
With the help of Taylor’s formula we get

Yo(ue(z,t)) = Jo(ug (z,1)) + Ole), € —0, (z,t) € Qy x (0,7). (6)

Plugging the series (4) into the first equation of problem (1), the boundary conditions

on S, and the initial condition, using (6) and collecting coefficients of the same powers of ¢,

we get the following relations for function ug

g (z,t) — Agug (z,t) + Io(ug (z,t)) = folz,t), (x,t) € Qo x (0,T),

ap 2 Uo (I t)‘s - ap 2 Ug (I t)’S""a JRS {07 1}7 te (OaT)u
Ug (I’,O) _07 ZEEQ().
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Now let us find the limit relations in domains D;, i € {1,2}, which are filled up by the
thin discs from i-th level as € tends to zero. Assuming for a moment that functions uif are
smooth, we write their Taylor series with respect to xs at the point (7 + b;) and pass to the
“rapid” variable & = xo/c. Then (5) takes the form

ez, t) A ug (v, (5 + be), w3, t) + Y FVI(E &,1),  (2,t) € GY(j) x (0,T),  (7)

k>1

where Z:=(z1, x3), and

k—1 . t,—
ivji( —J = b)) 0"y, : _
Vi &) = Y T W T e 4, (), 1)
m=0 ’ 2
(&2 = = bi)* FFuy~
+ (z1,€() + bi), w3, 1). (8)
k! ook ! ’

Further we will indicate arguments of functions only if their absence may cause confusion.
The outward unit normal to the lateral surfaces of the thin discs except a set of zero
measure is as follows

1 ! ! .
vo(z) = (_5hl(r)x1,i1,—m> . xesSY ie{1,2}, (9
N e S AN o

7

where “4”7 and “—" refer, respectively, to the left and the right parts of the lateral surface
of each thin disc. Obviously, (1 + 524*1|h§(7")|2)_% =1+ 0(e?), e = 0.
Again by Taylor’s formula we obtain

Do(us(z,1)) = Dol (2, ) raern) + OE), =0, (2,0) €GO x (0.7).  (10)

Let us put (7) into (1) instead of u.. Taking into account (9), (10) and that the Laplace
operator in the variables (Z, &) has the form A, = A; + 6_288—;2 and collecting coefficients of
the same powers of ¢, we arrive at one-dimensional boundary-value problems with respect
to & for functions V' J

Problems for V' read

i),

Iz

85252‘/821] = 07 52 S Ih- () ( ( )

ie{1,2}, (11)
852‘/;,7{ = 07 52 T‘) +j + bla

where 0¢, = 852 0?252 = 852 Here the variables 7, ¢ are regarded as parameters.

It follows from (11) that V.Y do not depend on &. Therefore, V{ are equal to some
functions @\ (z1,e(j + b;), 23, 1), (x,t) € GV (j) x (0,T), which will be defined later. Then,

due to (8) we have
ui’i(xl,g(j + bi)7x37£2 - j? t) = Spgz)<x17 (] + b; ) I‘3,t>
—(& = j = b)Onuy (21,6 +bi) 3 t), (2,8) € GP(j) x (0,T). (12)

Boundary-value problems for V. 5 " and Vfgj have the view

{—352252‘/51,éj = (—0wuy” + Azug” —Vo(ug”) + fo)lmametirn)s &2 € T (4), (13)

05, Vo3 = (27 Vahy - Vaug™ — 91(ug ™) + 65,190) [osme(is), 2 = R R R
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3522@‘/;22] = (—0uy™ + Dsup” — 9o(uy ") + follasmeabe): €2 € Tnaer (), (14)
+06, V2 = (27 VahoViug ™= Sa192(u ") + 05,190 lanme(isbn)r &2 = £52 + j + b,
respectively, where 9y, is the Kronecker symbol.
The solvability conditions for problems (13) and (14) read
hlatu(l)’_ — diVj(hleUé’_) + hﬂ%(uo ) + 2191 (U’O ) hlf() + 2557190,
) :5(j+b1), re (do,dl) ( ,T) (15)
hoOpuy ™ — diva(hoVaug ™) 4 hatlo(ug™) + 20a102(uy ™) = hafo + 205,190,
Ty = 5(] + bQ), e (do, dQ) (O,T) (16)
respectively. A
Putting (7) into the Robin boundary conditions on QQ), we get
Orug ™ +01(ug™) =0, (2,) € QY % (0,T), wo = e(j +by), (17)
a7"““07_ = 07 (Iat) € Qg) X (O7T)7 Tg = 5(] + b?) (18>
Plugging (7) into the initial condition of problem (1), we find that
ug (2,00 =0, z€GY, zy=c(j+b), ic{l,2} (19)

In order to find conditions in the joint zone ng) we use the method of matched asymptotic
expansions for outer expansions (4), (7) and an inner expansion which will be constructed
in the next subsection.

3.2. Inner Expansion. In a neighborhood of the joint zone Qéo) we introduce the “rapid”
coordinates & = (&,&), where & = —(r — dy)/e and & = xq/c. Here (r,x9,0) € R? are
the cylindric coordinates: r = /2% + 23, tan(d) = w3/x;. The Laplace operator in the
coordinates (1, &s, 0) has the form

1 0 1 02

Ap=ec2Ne—e o~ 4~
¢ do — & 08 | (do — £&,)2 062

(20)

We seek the leading terms of the inner expansion in a neighborhood of Qéo) in the form

UE(x7 t) ~ U(T(Iv t)‘T=d0 + 5(21(5)5%2“3(1’7 t)|7"=d0_
_(n(x27t>51(§) + (1 - n(x%t))E2(£))aru3_(xvt)|r:do> +..., (21>

where 71, =, Z5 are functions, which are 1-periodic with respect to & and defined in the
union [L=IT" UII] UTI; of the semiinfinite strips [T = {£ € R?: & > 0, & € (0,1)}, IO =
{€€R?*: & <0, & € Li(dy)}, 1 € {1,2}, (see definition of I;(dy)), n is a function, which will
be defined from matching conditions.

Putting (21) into the differential equation of problem (1) with regard to (20) and into
the corresponding boundary conditions and collecting coefficients of the same powers of ¢,
we get the junction-layer problems for Z;, =;, Z,. The functions =; and =, are solutions of
the following homogeneous problem

—AgEZO, in H,
0e,= = 0, on (0T UOIL, ) N{¢ € R?: & < 0}, (22)
O, = =0, on Il N {¢ € R?: & = 0},

O Eleymo = 0L Ele,m1, p€{0,1}, &> 0.
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Main asymptotic relations for =;, =, can be obtained from general results on the asymp-
totic behavior of solutions of elliptic problems in domains with different exits to infinity (see,
for instance, [29]). However, for the domain II, we can define more exactly the asymptotic
relations for junction-layer solutions Z;, =, in the same way as in [18, 19].

Proposition 1. There exist two solutions =1, Z5 € Hj,,.(IT) to problem (22), which have
the following differentiable asymptotics

& + O(exp(—27&)), & — +oo, £ €117,

21 = { alV + O(exp(rh (do)&1)), & — —oo, £ e1I7, (23)
73! (do)ér + af? + O(exp(rhy (do)€1)), & — —o0, £ €115,
(&1 + O(exp(—27&1)), &1 — +oo, £ €TT,

Ey = i (do)&r + oS + O(exp(rhi (do)&1)), & — —oo, € €117, (24)
\ag) + O(exp(mhy* (do)€1)), & — —oo, £ ell;.

Here Hj, (1) = {u: Pi — R:u(&,0) = u(&y, 1) forany & > 0, u € H'(Ilg) for any
R>0}Tz={¢e€ll: —R<& <R}, of, i {1,2}, are some constants.

Any other solution of problem (22), which has a polynomial growth at infinity, can be
represented as a linear combination co + c1Zq + caZ=s.

The function Z; is a solution of the following problem

—AgZ = 0, in H,
8§2Z = —1, on (81’[1_ U 81'[2_) N {5 c R?: &< O}, (25)
9,7 =0, on AN {€ € R2: &, = 0},

8§2Z\§2:0 = 8522‘62:1, P = 1€ {O, 1}, fl > 0.

Similarly to [18, 19, 28| it is easy to verify that there exists a unique solution Z; €
H ), (IT) with the following asymptotics

O(exp(—27&1)), & — +oo, £ eIl
Z=q & +b+ 04:(31) + O(exp(mhy ' (do)&1)), & — —oo, € € 17, (26)
—& + by + al? + O(exp(mhy (do)&1)), & — —oo, £ €115

Now let us verify the matching conditions for outer expansions (4), (5) and inner expan-
sion (21), namely, the leading terms of the asymptotics of the outer expansions as £ — £0
must coincide with the leading terms of the asymptotics of the inner expansion as £ — +oc.
Near the point (z1,e(j +b;), z3) € Q\ for any fixed t € (0,T) the function ui has the follo-
wing asymptotics

Ua_(.’lf,t) ~ US_(.Il,E(j + bi)vaj?nt)lr:do + 5(52 _j - bi)axgug_(ajlag(j + bi)7$3>t)|r:do_
—65187/&8_(1'1,5(]. + bl), I3, t)|r:d0 —+ ... as 51 — O+, (ZE, t) - QO X (07T)

Taking into account the asymptotics of Z;, Z; and =5 as £ — +00, we see that the matching
conditions are satisfied for expansions (4) and (21).
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For any t € (0,7) the asymptotics of (5) in the neighborhood of (z1,(j + b;),x3) € Q(()O)
are equal to
uf)’_(xl, (] + b) L3, )|T do +5(§0§)(1}17 (] + b) T3, >|T:d0_

—&10ug (w1,6(j + bi), w3, 1) r=ay) + - as & = 0=, (2,8) € GY(5) x (0, T), i € {1,2}.
(27)

It follows from (23), (24) and (26) that the first terms of the asymptotics of (21) in the
neighborhood of (x1,e(j + b;), x3) € Q(()O) are
ug (21,2() + b), 23, )l gy + € (05" Doy (w1, 67 + b1), 03, 1) -y~
— (=i +b0), 1) + (b (do)és + ) (1 = n(=(f + ba), 1)) Dy (1,20 + b), 3, )] -
as & — —oo, (z,t) € Ggl)(j) x (0,7, (28)
uﬂ%,w+%%m>w%+ew9@wmm,u+m>m,mﬁf
~((hy (do)&y + @ )n(e(j + ba). ) + (1= (e + b2). 1)) Drug (w1, (5 + ba), 03, 1) gy
as & — —oo, (z,t) € GP(4) x (0,T). (29)
Comparing the first terms of (27), (28) with (29), we get

ug (z,8) = ug (2,t), (2,t) € QY x (0,T), w2 =<e(j +b;), i € {1,2}. (30)
Comparing the second terms of (27), (28) with (29), we find that

o, t) = o Opud (2,1),  (2,1) € QY x (0,T), za=2(j +b), i € {1,2},  (31)
and

(1 = m)hiH(do)drug (w,1) = druy ™ (2,1), (z,t) € QY x

32
s (do)vu (z. 1) — Bl (z, ), (1) € QO (32)

Since the points {e(j +;): j € {0,1,...,N — 1}, i € {1,2}} make up an e-net on the
segment [0,[], we can extend equalities (12), (15), (16), (19) to the domains D;, equalities
(17), (18) to QY and Q. respectively, and equalities (30), (31) and (32) to Q. As a
result, from equalities (32) we derive the relation

ha(do) 0,y |r=a,
hl(do)&,ué’_ r=dy 1 hz(do)arug’_V:do

n(xg, t) = , x2€(0,1), t € (0,7),

and obtain d,ul = h1(de)drub™ + ha(do)dyud™, (z,t) € QY x (0,T).
By virtue of (30) and (31) we can define gogz) as follows
(@ t) = ol dpuf (2,t),  (2.t) € Dy x (0,7), i € {1,2}.

3.3. The homogenized problem. With the help of the first terms ug, uy~ and uy ™~ of
asymptotic expansions (4) and (5) we define the multi-sheeted function

ug (z,t),  (x,t) € Qo x (0,T),

Ug(z,t) = Q uy (1), (x,t) € Dy x (0,T),
uy (x,t), (x,t) € Dy x (0,7),
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or in a short form Uy = (ug,uy ™, ug ). It follows from the foregoing that the components
of Uy must satisfy the relations

;

Opug — Dgug + Vo(ug) = fo, (z,t) € Qo x (0,T),
0, ug |- = 0%, ug |5+, p€{0,1}, t €(0,T),
by (r)Opuy™ — diva(hy (1) Vaug ™)+
+hy () Po(uy ™) + 2041 (uy™) = ha(r) fo + 205190, (xz,t) € Dy x (0,T),
Dyutg™ + 1 (uy”) =0, () € Q) x (0,7),
hg(r)ﬁtug’_ — divz (hg(r)Vjug’_)—i— (33)
+ha ()00 (ug ™) 4 200102 (ug™) = ha(r) fo + 205190, (,t) € Dy x (0,T),
duy™ =0, (z,t) € Q¥ x (0,T),
ug g =ty lgo = 4 g, te€(0,7),
ha(do)Brul™ + ho(do)dhul™ = dhug, (z,t) € Q) x (0,T),
| Uo(z,0) = 0.

These relations form the homogenized problem for problem (1).
We introduce the space Vy:=L?()y) x L?(D;) x L*(D5) of multi-sheeted functions u =
(uo, u1, ug) defined as follows

up(z), x € Qy,
u(z) =S ui(z), x= € Dy,
UQ(I‘), x € D2.

The space V), is equipped with natural inner product. Also we introduce the anisotropic
Sobolev space of multi-sheeted functions

Ho:={u = (ug, us, uz) € Vo: ug € H'(Q), uols— = uo|s+;
Elc()m].ui € LQ(DZ), j = 1,3, 1= 1,2; u0|QE)O) = u1|QéO) = U2|Q(()O)}

with the inner product

2
(W, V)3, = / (Vg - Vv + ugvg)de + Z/ (Vzu; - Vv + wv;)de.
o i=1 /D

It is obvious that Hg is continuously embedded in V.
Consider the space

Wo:={p = (g0, 1, 2) € L*(0,T; Ho), F0ipi=¢" € L*(0,T5 W)}

A function Ug = (ug, uy ™, uy~) € L*(0,T;H,) is a weak solution of problem (33) if for
every function ¢ = (g, 1, v2) € Wy the integral identity

2 T 2
/ (ug wo)le=rdz + Z/ (hiug™ i) [e=rdz — / (/ ug Opodz + Z/ hiug~ Oypidz +
2 —~ Jp, 0 \Jao — Jp,
2 . .
+/ (Vaug - Vagpo + 9o(ug )po)da + Z/ hi(Viug™ - Vipi +Jo(ug™)pi)dz+

+2 / V1 (uy " )prda + hy(dy) / N V1 (uy " )prdoy + 20a.1 / %(ué’)g@dm) dt =
Dy Qo

Dy
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T 2
= / </ fowodx + Z/ (hifo + 2557190)90#3:) dt
0 o i=1 Y D
holds.

Similarly as in [26] we can prove the existence and the uniqueness of a weak solution of
problem (33).

4. Approximation and asymptotic estimates. Let Uy = (v, ué’f,ug’f) be the unique
weak solution of problem (33). With the help of Uy and the solutions Z;, Z;, =5 of junction-
layer problems (22) and (25) we construct the main terms of expansions (4), (5) and (21).
Consider the smooth cut-off function xo(r), which is equal to 1 as |r — dy| < dp/2 and 0 as
|1 — do| > 0¢, where §y € (0,9) is some fixed number. Matching the outer expansions with
the inner expansion with the help of x(, we define the approximation function R,

R.(z,t):=Rf (x,t) = ug (z,t) + exo(r)NT (&, x9,0,t), (x,t) € Qo x (0,7), (34)
R.(x,t):=R" (x,t) = uf (z,t) + ¢ <§~/Z (%) Oyt ™ (2, 1) + X0 (r)N® (€, 2, 9,75)) :
(z,t) € GY(5) x (0,T), ie{1,2}. (35)
Here
N+(£7 Ta, Q,t) - Zl(&)axzug-“:do + (51 - 77<I27 t)El<€> - (1 - 77(@7?5))52(5))@“3\7":[107

NP7(€22,0,1) = (Z1(€) = Yi(€2))Dua g |r=ae+
+(Vi(&r, @2, ) — (22, £)Z1(E) — (1 — n(@2,))Z2(€)) Ortd [raty

where Yj(s):= — 5 + [s] + b; + ozg), [s] is the integer part of s € R, ¢ € {1,2}, and

Vi€, 2o, t):=hy ' (do)& (1 — n(x2, 1)), Valr, ma,t):=hy " (do)&an (a2, t),
£ <0, 25€(0,0), te (0,T).

Obviously, R, € W.. Due to the initial condition of problem (33) we have R.|;—o = 0 in €),.

Theorem 1. Let fo(z,t), (z,t) € Q x [0,T)], and go(x,t), (x,t) € Dy x [0,T], be smooth
functions such that O fols- = 0% fo|s+ for allt € [0,T], p € {0,1}, fo(x,0) = go(x,0) = 0.
Then for any j > 0 there exist positive constants €gy, ¢y such that

|ue — Rel|2(0,mm1 (000)) + s luc(-,t) — Re(-, )| 220y <

- —a)ta— _ 5
< CO(Hfa - fOHLZ(QEX(O,T)) +el7h 4 gho1Zma)tart + e’ 1”96 - 90||LB27(1D1><(07T))) (36)
for all € € (0,¢e¢), where u, is the solution of problem (1), and R, is defined by (34) and (35).

Proof. Discrepancies in domain €)y. Notice that the first two relations in (33) and the
assumptions of the theorem yield 92, uf|s- = 92,,, ug|s+. Then, according to the properties
of Zy, 21, =5 and ug, the function R} satisfies the boundary conditions of problem (1) on

00 N 0.
Problems (22) and (25) imply

ANT =0, AN =0 €I, 25 €(0,1), 0 €[0,2n], t €[0,T], i € {1,2}. (37
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Observe that the following equality holds

Az (xo(r)N) = diva(NVixo(r)) + Vaxo(r) - VaN + xo(r)A:N, N =N(§,72,0). (38)
Using (20), (33), (37) and (38), we get

atRj<x>t) - AxR:(ZL', t) - fs(xvt) = fO(xv t) - fa(x’t) + 5XO(T>atN+(§, T, 07t)_
_790(“3(377 t)) + X0<7’)<T718§1N+(€7 T2, 97 t) - 28§2x2N+(§7 T2, 67 t))_
_SdiVI(N+|€1— (T*do)/evixooa)) + X()(T)afr/\/q—(& 2,0, t)_
—ex0(r)02, ., N (&, 2,0, 1) — erxo(r)DppN Tt (€, 22,0, 1),  (z,t) € Qo x (0, 7). (39)

We multiply (39) by a test function ¢» € W, such that ¢(z,T) = 0, integrate by parts in
Qo x (0,7T) and take into account the properties of RF. This yields

T
/ (— / REOppda + / (VoR: - Vatp + 0o(RI ) da — / 0, R vdo, — fgwda:) dt =
0 Qo Qo e Qo
=l (&) +. + 15 (5 9) (40)

for all v € W, ¢(z,T) = 0, where
If (e, 0): / : (fo — f)bdadt, Ti (e, ):=¢ / / YoON Tdadt,
I (e, )= / [ (o) = oot o, 1 (2.0 | / Xo(r ™ e N — 92, N*) b,
I (e, 1) /0 ' (5 [ N*Vaxo - Vit + /Q Xga&Nwdx) it

T
Igr(a,w)::s/ (/ X002, N0, 00dx —|—/ r2X089N+89¢dx> dt.
0 Qo Qo

Discrepancies in the thin discs. One can readily check that

ORE™ = —th(uy”) — Vi (2 )amﬁl(uo ), (z.1) € QU x (0, ),
O,R>™ =0, (z,t) € Q¥ x (0,7), (41)
0,R" =Y, ( )aﬁm L ORY, (1) € 09 x (0,7), i€ {1,2). (42)

Taking into account (9) and that functions h; are constant on a neighborhood of dy, we
derive that

€ 0 .
a,R.™ +Y; Ut 4 oo (N |y /e) —
IV eI )|2( ( > X055 NV lermzae)

1 , A A
5 Vahi - Va(ug™ teY; (f) azzug—)), (z,t) € SO % (0,T), i € {1,2},  (43)

where “+7 and “—" refer to the left and the right parts of the lateral surfaces of the thin
discs, respectively.
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Relations (20), (33), (37) and (38) yield
QR (,) = ApRE (2,) = fo(w,t) = fo(w,t) = folw,t) + e(Vilwa/e) O} u5 ™+
+X0(1) N (€, 22, 0,1)) — Do(ug™) + xo(r) (r O, N7 (€, 22, 0,) — 202, N7 (€, 22,0, 1))—
—edivy (N g = (r—do)/= Vaxo(r)) + Xo(r) e N7 (&, 22,0, 1) — ex0(r) 02,0, N7 (&, 22,0, 1) —
—exo(T)r 200 N (€, 29,0,t) + Va(In hy(r)) - Vaug~ — ediv, (f/i(xg/e)vz(@mué’_)) —
—2(1 = §39(1 = 01))hy ()0 (™) + 205105 () go(x, 1),  (2,t) € GY x (0,T).  (44)
Consider the integral identity

shi(r) / / To .
do, = dr — ¢ Y; (—) Oz,pdx, 1€ {1,2}, 45
fo sy riammetes = fp #ia e [ ¥ (2) duin i) s

where Y;(s) = —s + [s] + b; and [s] is the integer part of s, ¢ € Hl(Gg)) is an arbitrary
function. We multiply (44) by a test function ¢p € We, ¢ (x,T) = 0, and integrate by parts
in G x (0,T), using (45) and taking into account relations (41), (42), (43). This yields

T
/ (_ [ o [ (VR Va4 0B Yoo+ [ 0u(RE o +
0 Gl Gt

st

T / D1 (RE)do, + / O, R o, — / fotbd — £ / gswdax) dt =
Q” of! at! st
— () o+ 1), (46)

T
/ (_ / R2=Oybdar + / (VoR2 - V) + Po (R )b)dar + £ / o B2 Yo, +
0 a® al® &

+ / 0. R pdo, - / fotbda — &° / gewdax> dt = I§ (e, 0) + ...+ I3 (e,4)  (47)
o o 1

for all » € W, ¢(x,T) = 0, where
T
o= [ (- s,
0o JaG¢
i,— T > (L2 2 G i
e [0 (%) B+ xalr)ON e,
o Jal €
T
Bewy= [ [ O~ ool )t
0 JG¢
T
B [ ] x9N = 0 N e,
0 Gy’
T
—72_(571#)3:/ (5 N Vaxo - V5¢d$+/ , Xgalei7_de) dt,
0 at) Gt
T
I (e,4)=¢ / ( / X002, N Oyt + / | r—QXOagN"v—aewdx) dt,

0 G a

Ié’(e,w):ze/ (/ Y, (—) O, (VVzu§™ - VzIn hy)dx +
0 al €

+/ Y; (@> Vo (Oyul™) - wadx) dt, ie{1,2},
a €
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T 1,—
1,- o B Vi(ug™ )Y B T2 ;-1 1,-
I (5,¢).—/0 ( 5/521) i 4—152|h’1(r)|2d% 2e /Ggl) Y, ( . ) hi 0wy (V1 (ug ™ )Y)dz +

+e / V(R )do, + / (91 (RE7) = Oy (uy™) —eVs (@> 8x2191(u(1]’_))¢d0$) dt,
s QY €

T 2,—
o= [ (et [, e e
: 5 T+ A1) P

—2c6,4 / Va (2) by 0, (92 " )w)da + 2 / ﬂQ(sz—)wd%) dt,
a® 5 T®

[é’_(e,qﬂ)::/T 5551/ oY doy+
0 T s /T4 41e2(hh ()2

+ 2205, / Y, (ﬂ> R0, (gov)dz — &° / gewdax) dt,
oW € e

Ig’_(e,w)::/T 5(551/ Go¥ do.+
0 D s 14 47t hh(r) 2

L2 -1 _ B
+ 260, /G oY () ha"0us(g00)dz — = /T . gswdax> dt.

Asymptotic estimates. After summing (40), (46) and (47) we see that the function R, defined
by (34) and (35) satisfies the integral identity

T
F() = /0 <— /Q R.opbdz + /Q (Vo Re - Vot + Vo(Re)0)da + ¢ / L (R, +

Se

+/ ﬁl(Ra)dez + 5a/ ﬁQ(Ra)dez - fa¢d$ - 66/ gawdax) dt (48>
QY e Q. s

él)urg)

for all » € We, 9|imr = 0, where Fo(¢):=IF +.. .+ IF+ 15 +1; + Iy, [;=I0" +177, k€
{0,1,...,8}, IZ:=It + I~ me{0,1,...,5}.
It follows from (3) and (48) that

/0 (— / (R. — u.)dybda + / (Vo(Re — 12 - Vb + (J0(Re) — D)) da +
+e /sgl)(ﬂl(Rg) — V1 (ue))odo, + /le)wl(Ra) — 01 (ue))do,+
e /Y L (a(R2) - ﬂg(ug))wdax) dt = F.(1) (49)

for all p € W, ¢|i=r = 0.

Now we are going to estimate F.(1)). With the help of the Cauchy-Schwartz-Bunyakovskii
inequality we obtain |Iy(e,9)] < |Ife = foll 2@ xomnl¥llz0ra ), (e 9)] <
Crel[¥llz.rm 02)-

Remark 1. Here and further all constants ¢;, C; in asymptotic estimates are independent
of e.
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By (2), Taylor’s formula and the Cauchy-Schwartz-Bunyakovskii inequality we derive
that

|15 (2, ¥)] < coe

T
/ / XON+wd$dt‘ S 015||w||L2(O,T;H1(QE))~
0 Qo

Similarly we estimate I, . Thus, |15 (g,9)| < Cocl|¥)|| z2(0.7:11(0.))-
Since the functions 6?51./\/ * 852 N 0N, 02 2./\f “~ exponentially decrease as |&;| —

oo (see (23), (24) and (26)), then from Lemma 3.1 in [6] we derive that
V>0 3C3>0 Fe0>0 Vee (0,60): |5 (e, ¥)| < Cse' [l 20,7501 00 ))-
The integrals in I;(g,v) are in fact over

(supp(xo(r)) N Q) x (0,T) ={z € Q.: 6/2 < |r — do| < do} x (0,T),

where, according to (22) and (25), the functions N, 9g, N+, ¢, N~ are exponentially small,
and N~ can be estimated by some constant c. Thus, I} (g,9)| < Cuel|¢)|| z2(0.7.m1 (00.))-

The integrals in I are over {x € R*: |r—dy| < &} and they can be estimated, extracting
if necessary the exponentially decreasing part in the corresponding integrand and then using
the Cauchy-Schwartz-Bunyakovskii inequality. Consider, for example, the integral

" X00, N 1’8x2wda:dt‘ =
Ge

o Xo <<Zl - ifl)&izxzu(j;lr:do -
—(hy (do)ér + Z1 — E2)0uy00pug |r—ay+

T o) (1= 0) = 71— (1= 0)Z2)02, 1 |=a, ) amwdxdt\ <

T
< sl 2051 (00) (\// /(1) Xo|Z1 — Yi[?dzdt +
0

1 1
+lat"n+ a5 (1 = n) + (i = a§) Ayl 2 g0,

<) T

T
+\// /(1) Yol (o) + (51 — o) = (Z - Oégl))‘zd:cdt—i—
0 Ge
' 1 1 2
+ / /G(1> Xo\ﬁ(& — ag )) + (1 =n)(Ey — hyH(do)é1 — ag )>| dadt | <
0 €

< el 2o, m1 (900 (\/ 2nldoe|| Zy — }71||L2(H1_) 4y /|G§1)\ i

++/2rldoe||hy H (do)ér + (B4 — Olgl)) — (2 — agl))HL? mp)t
++/2mldoe||n(E, — al )+ (1 =n)(E2 — hy'(do)&1 — 042 )||L2 )) ’

where |G§1)| is the measure of Gt". Relations (23), (24) and (26) show that the norms in the
right-hand side of the last inequality are bounded in . Similarly we can estimate the rest of
the integrals in 5 (e, ). As a result, we obtain |15 (c,¢)| < Cse||v|| 20,1010 ))-

Remark 2. The constants Cy and Cy depend on

olel .

sup . WUO (I,t) 3 |Oé| = —|—O{2 + a3 S 27 073 Z 07 k € {17273}

zeQ\”, te(o,
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Extending homogenized problem (33) periodically in x5 through the planes {z € R3: x5 = 0}
and {z € R3: 2, = [} and taking into account the assumptions for fy and go, by virtue of
classical results on the smoothness of solutions to boundary-value problems we conclude that
these quantities are bounded.

Since fp is smooth, one has ué’_ € L*(0,T; H*(D;)), i = 1,2. Consequently,

2
s ()| < ese Y (g~ 2o ooy + 1062t~ 200 0o 192058100 <
=1
< Goell ¥l 205 00))-

In order to estimate I; we consider summand I7~ with o = 1. Obviously, the module
of the second integral in I~ can be estimated by cee|v|| 2051 (6.))- Using (2), Taylor’s
formula and the obvious equality

1 a*-1

R
a a*+a

(a* +a#0)

we derive that the absolute value of the sum of the first and third integrals in 12~ can be

evaluated by
_163 /T/ |h/2(r)|2192(u377)w do_zdt
@ 1 4 4712|hl(r)|2 + /1 + 4712 Ry (r)[?

/ / (2)Y2 8 amu% + XN~ )wdxdt'+e / / 9a(R wdaxdt’
—.Jl(e’f,w)‘i‘JQ(E,w)—i—Jg( ,w)

With the help of (45) we obtain Ji(e,v) + Jao(e,%) < csel|¥)||20mm1 0.y Taking into
account (2), properties of the trace operator and the fact that fy is smooth, we deduce
Js3(e,v) < coe|Y|| L2(0,1;m1 (00.y)- Thus, in the case when a = 1 we have

+

—|—C7€

1177 (2,9)] < croel| ¥l 2o (@)

In the case when a > 1 by (45) we obtain |I27 (g,¢)| < cne® Ml 20,01 (0.))- Simi-
larly to 127 (e,1)), we estimate I27 (e,v) and Ig (g,1)). As a result, we get |77 (g,9)| <
Crell¥llez 0,71 (0.)) and

I (5,4)] < (€ + 90 = gellzzix @) 1¥ 20,7100y B =1,
PNl L2 0,150 (00 )) 8> 1.
Thus,
\F.(¥)] < Col|lf= = foll2@ux .y + & 4 gl Gredtazly
gﬂinga gOHL2 D1 x(0,T) )H¢HL2(0,T;H1(QS)),

where p > 0 is an arbitrary number. From the last estimate with the help of standard scheme
we deduce inequality (36). O
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5. Discussion of the obtained results. As we can see from the obtained results, the
homogenized problem (33) for problem (1) is a nonstandard boundary-value problems for
multi-sheeted function Uy in anisotropic Sobolev space W, (see Section ). This problem
consists of three boundary-value problems (in domains 2y and D;, i € {1,2}), connected

with each other by the conjugation conditions (on Q(()O)).

The nonhomogeneous Robin boundary conditions on the lateral surfaces of the thin discs
in problem (1) are transformed as ¢ — 0 into new summands in the differential equations
in domains D;, i € {1,2}, in problem (33). These summands show us the influence of the
perturbed parameters o and . If a > 1, then the summand 25a,1191(ug’_) vanishes. From
physical point of view this means that the outer heat conduction coefficient is too small, and
we can neglect this heat exchange. If # > 1, then summands 203 ;g¢ vanish, which means
that the temperature of the environment is too small, and we can consider it being equal to
ZEro.

Functions h;,i € {1,2}, which describe the relative thickness of the thin discs from the
i-th level, are transformed into the coefficients of the differential equations in domains D;,
respectively. The variable x5 is involved as a parameter in the boundary-value problems in
D;,i € {1,2}, which shows us the influence of the type of thick junction (2. on the asymptotic
behavior of solution wu..

From results proved in the present paper it follows that for applied problems in thick
junctions we can use the homogenized problem (33), which is simpler, instead of the initial
problem (1) with sufficient plausibility.

Acknowledge. The author is grateful to professor T. A. Mel'nyk for the statement of
problem, attention during it’s solving and discussion of the obtained results.
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