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We consider a quasilinear parabolic boundary-value problem in a two-level thick junction Ωε

of type 3 : 2 : 2, which is the union of a cylinder Ω0 and a large number of ε-periodically
situated thin discs with variable thickness. Different Robin boundary conditions with perturbed
parameters are given on the surfaces of the thin discs. The leading terms of the asymptotic
expansion are constructed and the corresponding estimate in Sobolev space is obtained.

Д. Ю. Садовой. Асимптотическая аппроксимация решения квазилинейной параболиче-
ской краевой задачи в двухуровневом густом соединении типа 3:2:2 // Мат. Студiї. – 2012.
– Т.38, №1. – C.51–67.

Рассматривается квазилинейная параболическая краевая задача в двухуровневом гус-
том соединении Ωε типа 3 : 2 : 2, которое состоит из цилиндра Ω0 и большого количества
ε-периодически присоединенных тонких дисков переменной толщины. На поверхностях
тонких дисков из обеих уровней задаются разные краевые условия третьего рода с воз-
мущенными коэффициентами. Строятся главные члены асимптотического разложения и
доказывается соответствующая оценка в пространстве Соболева.

1. Introduction. A thick junction of type m : k : d is a union of some domain, which is
called the junction’s body, and a large number of ε-periodically alternating thin domains,
which are attached to some manifold (the joint zone) on the boundary of the junction’s
body. The small parameter ε characterizes the distance between neighboring thin domains
and their thickness. The type m : k : d of a thick junction refers, respectively, to the limiting
dimensions (as ε → 0) of the junction’s body, the joint zone and each of the attached thin
domains. The subject of the investigation of boundary-value problems in thick junctions is
the asymptotic behavior of solutions of such problems as ε → 0, i.e. as the number of the
attached thin domains infinitely increases as well as their thickness tends to zero.

The first researches in this direction were carried out in [10, 11, 15], where convergence
theorems for the Green function of the Neumann problem for the Helmholz equation in the
junction’s body were proved. In these papers either the assumption about the convergence of
certain components of the boundary-value problem was made, or explicit representations of
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certain quantities were used, which was possible under certain configurations of the junction’s
body (the half-space). In [17]–[21], [27] thick junctions were classified, asymptotic methods
for the investigation of main boundary-value problems of mathematical physics in thick
junctions of different types were developed, convergence theorems were proved, the first terms
of asymptotic expansions were constructed, and the corresponding estimates were proved. It
was shown that qualitative properties of solutions essentially depend on the junction’s type
and the conditions given on the boundaries of the attached thin domains (see also [1, 3, 23]).

As an extension of the investigation, in papers [7, 8, 16] thick junctions of more compli-
cated geometric structure were considered, namely multi-level thick junctions. A multi-level
thick junction is a thick junction in which thin domains are divided into finitely many levels
depending on their geometric structure and boundary conditions imposed on their surfaces.
Besides, thin domains from each level ε-periodically alternate along the joint zone. In these
papers linear boundary-value problems in thick junctions of types 2 : 1 : 1 and 3 : 2 : 1
were considered. Moreover, there a new qualitative difference in the asymptotic behavior of
solutions of boundary-value problems in multi-level thick junctions was noticed, namely the
“multi-phase” effect in the domain that is filled up simultaneously by the thin domains from
different levels.

The successful applying in nanotechnology and microelectronics of constructions, which
have form of thick junctions (see [12]–[14]), has lead to effective studying of boundary-value
problems in thick junctions of various types and more complicated structure (see also [1]–[4],
[22, 23]).

In the present paper we consider quasilinear parabolic boundary-value problem in a two-
level thick junction of type 3 : 2 : 2, which consists of a cylinder Ω0 and a large number of
thin annular discs with varying thickness, which are ε-periodically attached to Ω0. Different
nonhomogeneous Robin boundary conditions are given on the surfaces of the thin discs
from various levels. The leading terms of the asymptotic expansion for a solution of this
problem are constructed and the asymptotic estimate in Sobolev space is proved. It should
be noted that linear parabolic boundary-value problems in thick junctions of various types
were investigated in [5, 8]. Quasilinear parabolic problems in a two-level thick junction of
type 3 : 2 : 2 were considered in [24, 25], where only convergence theorems were proved.

2. Statement of the problem. Let 0 < d0 < d2 ≤ d1 and 0 < b2 < b1 < 1, and let
hi : [d0, di] → (0, 1), i ∈ {1, 2} be piecewise smooth functions. Suppose that functions hi
satisfy the following conditions

0 < bi−
hi(s)

2
, bi +

hi(s)

2
< 1 ∀s ∈ [d0, di], i ∈ {1, 2} b2 +

h2(s)

2
< b1−

h1(s)

2
∀s ∈ [d0, d2].

These inequalities imply that for all s ∈ [d0, di] the intervals Ii(s):=(bi − hi(s)/2, bi +
hi(s)/2), i ∈ {1, 2}, belong to the interval (0, 1), having no common points and do not
adjoin.

We additionally assume that the functions h1, h2 are constant in some neighborhood of d0,
i.e. there exists δ > 0 such that hi(s) = hi(d0) for all s ∈ [d0, d0 + δ], i ∈ {1, 2}.

Consider a model thick junction Ωε of type 3 : 2 : 2 (see Fig. 1) that consists of the
cylinder Ω0 = {x = (x1, x2, x3) ∈ R3 : 0 < x2 < l, r:=

√
x2

1 + x2
3 < d0} and 2N thin annular

discs

G(1)
ε (j) = {x ∈ R3 : |x2 − ε(j + b1)| < εh1(r)/2, d0 ≤ r < d1},

G(2)
ε (j) = {x ∈ R3 : |x2 − ε(j + b2)| < εh2(r)/2, d0 ≤ r < d2},



HOMOGENIZATION OF PARABOLIC PROBLEM IN THICK JUNCTION OF TYPE 3:2:2 53

6

0

d0

d2

d1

x3

�� �� �� �� �� �� �� ��BB BB BB BB BB BB BB BB
D
DD

D
DD

D
DD

D
DD

D
DD

D
DD

D
DD

D
DD

� � � � � � � �A A A A A A A A
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

BB BB BB BB BB BB BB BB�� �� �� �� �� �� �� ��
�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

A A A A A A A A� � � � � � � �
D
DD

D
DD

D
DD

D
DD

D
DD

D
DD

D
DD

D
DD

-
l x2ε

Fig. 1: The cross-section of thick junction Ωε of type 3 : 2 : 2 (N = 8).

where j ∈ {0, 1, . . . , N − 1}, ε = l/N, i.e. Ωε = Ω0 ∪ Gε, Gε = G
(1)
ε ∪ G(2)

ε , G
(1)
ε =

∪N−1
j=0 G

(1)
ε (j), G

(2)
ε = ∪N−1

j=0 G
(2)
ε (j). HereN is a large integer. Therefore, ε is a small parameter,

which characterizes the distance between neighboring thin discs and their thickness.
Denote by S(1)

ε and S(2)
ε the union of the lateral surfaces of the thin discs of the first and

the second levels, respectively, and by S the union of the bases of the cylinder Ω0, i.e.

S(i)
ε :={x ∈ ∂G(i)

ε : |x2 − ε(j + bi)| = εhi(r)/2, j ∈ {0, 1, . . . , N − 1}, r ∈ (d0, di)}, i∈{1, 2},
S− = {x ∈ ∂Ω0 : x2 = 0}, S+ = {x ∈ ∂Ω0 : x2 = l}, S = S+ ∪ S−.

We introduce the following notation

Ωi = Ω0 ∪Di, Di = {x ∈ R3 : 0 < x2 < l, d0 < r < di}, i ∈ {1, 2},
Q

(i)
0 = {x ∈ ∂Ωi : r = di}, i ∈ {0, 1, 2}, Q(i)

ε = {x ∈ ∂G(i)
ε : r = di}, i ∈ {1, 2},

Υ(i)
ε = S(i)

ε ∪Q(i)
ε , Θ(i)

ε = G(i)
ε ∩ ∂Ω0, i ∈ {1, 2}, Θε = Θ(1)

ε ∪Θ(2)
ε , Q(0)

ε = Q
(0)
0 \Θε.

In the thick junction Ωε we consider the quasilinear parabolic boundary-value problem

∂tuε(x, t)−∆xuε(x, t) + ϑ0(uε(x, t)) = fε(x, t), (x, t) ∈ Ωε × (0, T ),

∂νuε(x, t) + εϑ1(uε(x, t)) = εβgε(x, t), (x, t) ∈ S(1)
ε × (0, T ),

∂νuε(x, t) + ϑ1(uε(x, t)) = 0, (x, t) ∈ Q(1)
ε × (0, T ),

∂νuε(x, t) + εαϑ2(uε(x, t)) = εβgε(x, t), (x, t) ∈ Υ
(2)
ε × (0, T ),

∂νuε(x, t) = 0, (x, t) ∈ Q(0)
ε × (0, T ),

∂px2uε(x, t)|S− = ∂px2uε(x, t)|S+ , p = 0, 1, t ∈ (0, T ),

[uε]|r=d0 = [∂ruε]|r=d0 = 0, (x, t) ∈ Θε × (0, T ),

u(x, 0) = 0, x ∈ Ωε.

(1)

Here ∂ν = ∂/∂ν is the outward normal derivative; α, β ≥ 1 are parameters; the square
brackets denote the jump of enclosed quantities. For the right-hand sides of problem (1)
we assume that fε ∈ L2(Ωε × (0, T )), gε ∈ L2(D1 × (0, T )), there exists a weak derivative
∂x2gε ∈ L2(D1 × (0, T )), and

∃C0 > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0) : ‖gε‖L2(D1×(0,T )) + ‖∂x2gε‖L2(D1×(0,T )) < C0.
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The functions ϑi are Lipschitz-continuous (that is to say ϑi ∈ W 1,∞
loc (R)) and

∃c1, c2 > 0: c1 ≤ ϑ′i(s) ≤ c2 for a.e. s ∈ R, i ∈ {0, 1, 2}. (2)

Consider the spaces Hε = {ϕ ∈ H1(Ωε) : ϕ|S− = ϕ|S+} and Wε = {ϕ ∈ L2(0, T ;Hε) :
∂tϕ:=ϕ′ ∈ L2(0, T ;H∗ε )}.

It is known (see, for instance, [9, §1 ch. IV]) that Wε ⊂ C([0, T ];L2(Ωε)).
A function uε ∈ L2(0, T ;Hε) is a weak solution of problem (1) if for every function ϕ ∈ Wε

the following integral identity holds (see, e.g., [9, ch. IV])∫
Ωε

uε(x, T )ϕ(x, T )dx−
∫ T

0

∫
Ωε

uε∂tϕdxdt+

∫ T

0

∫
Ωε

(∇xuε · ∇xϕ+ ϑ0(uε)ϕ)dxdt

+ε

∫ T

0

∫
S
(1)
ε

ϑ1(uε)ϕdσxdt+

∫ T

0

∫
Q

(1)
ε

ϑ1(uε)ϕdσxdt+ εα
∫ T

0

∫
Υ

(2)
ε

ϑ2(uε)ϕdσxdt

=

∫ T

0

∫
Ωε

fεϕdxdt+ εβ
∫ T

0

∫
S
(1)
ε ∪Υ

(2)
ε

gεϕdσxdt. (3)

Similarly as in [26] we can show that for any fixed ε > 0 there exists a unique weak
solution of problem (1).

The aim is to study the asymptotic behavior of the solution of problem (1) as ε → 0,
i.e. as the number of the attached thin discs infinitely increases and their thickness tends to
zero.

3. Formal Asymptotic Expansions for the Solution. In this section only, for formal
calculations we assume that the functions fε, gε do not depend on ε, i.e. fε = f0 in Ω1×(0, T )
and gε = g0 on D1× (0, T ), and they are smooth in Ω1× [0, T ] and D1× [0, T ], respectively.

3.1. Outer Expansions. We seek the leading terms of the asymptotic expansion for solu-
tion uε, restricted to Ω0, in the form

uε(x, t) ≈ u+
0 (x, t) +

∑
k≥1

εku+
k (x, t), (x, t) ∈ Ω0 × (0, T ), (4)

and, restricted to the thin discs G(i)
ε (j), j ∈ {0, 1, . . . , N − 1}, in the form

uε(x, t) ≈ ui,−0 (x, t) +
∑
k≥1

εkui,−k (x, ξ2 − j, t), (x, t) ∈ G(i)
ε (j)× (0, T ), i ∈ {1, 2}, (5)

where ξ2 = x2/ε.
Expansions (4) and (5) are usually called outer expansions.
With the help of Taylor’s formula we get

ϑ0(uε(x, t)) = ϑ0(u+
0 (x, t)) +O(ε), ε→ 0, (x, t) ∈ Ω0 × (0, T ). (6)

Plugging the series (4) into the first equation of problem (1), the boundary conditions
on S, and the initial condition, using (6) and collecting coefficients of the same powers of ε,
we get the following relations for function u+

0
∂tu

+
0 (x, t)−∆xu

+
0 (x, t) + ϑ0(u+

0 (x, t)) = f0(x, t), (x, t) ∈ Ω0 × (0, T ),

∂px2u
+
0 (x, t)|S− = ∂px2u

+
0 (x, t)|S+ , p ∈ {0, 1}, t ∈ (0, T ),

u+
0 (x, 0) = 0, x ∈ Ω0.



HOMOGENIZATION OF PARABOLIC PROBLEM IN THICK JUNCTION OF TYPE 3:2:2 55

Now let us find the limit relations in domains Di, i ∈ {1, 2}, which are filled up by the
thin discs from i-th level as ε tends to zero. Assuming for a moment that functions ui,−k are
smooth, we write their Taylor series with respect to x2 at the point ε(j+ bi) and pass to the
“rapid” variable ξ2 = x2/ε. Then (5) takes the form

uε(x, t) ≈ ui,−0 (x1, ε(j + bi), x3, t) +
∑
k≥1

εkV i,j
ε,k (x̃, ξ2, t), (x, t) ∈ G(i)

ε (j)× (0, T ), (7)

where x̃:=(x1, x3), and

V i,j
ε,k (x̃, ξ2, t) =

k−1∑
m=0

(ξ2 − j − bi)m

m!

∂mui,−k−m
∂xm2

(x1, ε(j + bi), x3, ξ2 − j, t)+

+
(ξ2 − j − bi)k

k!

∂kui,−0

∂xk2
(x1, ε(j + bi), x3, t). (8)

Further we will indicate arguments of functions only if their absence may cause confusion.
The outward unit normal to the lateral surfaces of the thin discs except a set of zero

measure is as follows

νε(x) =
1√

1 + 4−1ε2|h′i(r)|2

(
−εh

′
i(r)x1

2r
,±1,−εh

′
i(r)x3

2r

)
, x ∈ S(i)

ε , i ∈ {1, 2}, (9)

where “+” and “−” refer, respectively, to the left and the right parts of the lateral surface
of each thin disc. Obviously, (1 + ε24−1|h′i(r)|2)−

1
2 = 1 +O(ε2), ε→ 0.

Again by Taylor’s formula we obtain

ϑ0(uε(x, t)) = ϑ0(ui,−0 (x, t)|x2=ε(j+bi)) +O(ε), ε→ 0, (x, t) ∈ G(i)
ε × (0, T ). (10)

Let us put (7) into (1) instead of uε. Taking into account (9), (10) and that the Laplace
operator in the variables (x̃, ξ2) has the form ∆x = ∆x̃ + ε−2 ∂2

∂ξ22
and collecting coefficients of

the same powers of ε, we arrive at one-dimensional boundary-value problems with respect
to ξ2 for functions V i,j

ε,k .
Problems for V i,j

ε,1 read∂
2
ξ2ξ2

V i,j
ε,1 = 0, ξ2 ∈ Ihi(r)(j):=(−hi(r)

2
+ j + bi,

hi(r)
2

+ j + bi),

∂ξ2V
i,j
ε,1 = 0, ξ2 = ±hi(r)

2
+ j + bi,

i ∈ {1, 2}, (11)

where ∂ξ2 = ∂
∂ξ2
, ∂2

ξ2ξ2
= ∂2

∂ξ22
. Here the variables x̃, t are regarded as parameters.

It follows from (11) that V i,j
ε,1 do not depend on ξ2. Therefore, V i,j

ε,1 are equal to some
functions ϕ(i)

1 (x1, ε(j + bi), x3, t), (x, t) ∈ G(i)
ε (j)× (0, T ), which will be defined later. Then,

due to (8) we have

ui,−1 (x1, ε(j + bi), x3, ξ2 − j, t) = ϕ
(i)
1 (x1, ε(j + bi), x3, t)−

−(ξ2 − j − bi)∂x2u
i,−
0 (x1, ε(j + bi), x3, t), (x, t) ∈ G(i)

ε (j)× (0, T ). (12)

Boundary-value problems for V 1,j
ε,2 and V 2,j

ε,2 have the view{
−∂2

ξ2ξ2
V 1,j
ε,2 = (−∂tu1,−

0 + ∆x̃u
1,−
0 − ϑ0(u1,−

0 ) + f0)|x2=ε(j+b1), ξ2 ∈ Ih1(r)(j),

±∂ξ2V
1,j
ε,2 = (2−1∇x̃h1 · ∇x̃u

1,−
0 − ϑ1(u1,−

0 ) + δβ,1g0)|x2=ε(j+b1), ξ2 = ±h1(r)
2

+ j + b1,
(13)
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−∂2

ξ2ξ2
V 2,j
ε,2 = (−∂tu2,−

0 + ∆x̃u
2,−
0 − ϑ0(u2,−

0 ) + f0)|x2=ε(j+b2), ξ2 ∈ Ih2(r)(j),

±∂ξ2V
2,j
ε,2 = (2−1∇x̃h2∇x̃u

2,−
0 − δα,1ϑ2(u2,−

0 ) + δβ,1g0)|x2=ε(j+b2), ξ2 = ±h2(r)
2

+ j + b2,
(14)

respectively, where δk,n is the Kronecker symbol.
The solvability conditions for problems (13) and (14) read

h1∂tu
1,−
0 − divx̃(h1∇x̃u

1,−
0 ) + h1ϑ0(u1,−

0 ) + 2ϑ1(u1,−
0 ) = h1f0 + 2δβ,1g0,

x2 = ε(j + b1), r ∈ (d0, d1), t ∈ (0, T ), (15)

h2∂tu
2,−
0 − divx̃(h2∇x̃u

2,−
0 ) + h2ϑ0(u2,−

0 ) + 2δα,1ϑ2(u2,−
0 ) = h2f0 + 2δβ,1g0,

x2 = ε(j + b2), r ∈ (d0, d2), t ∈ (0, T ), (16)

respectively.
Putting (7) into the Robin boundary conditions on Q(i)

ε , we get

∂ru
1,−
0 + ϑ1(u1,−

0 ) = 0, (x, t) ∈ Q(1)
ε × (0, T ), x2 = ε(j + b1), (17)

∂ru
2,−
0 = 0, (x, t) ∈ Q(2)

ε × (0, T ), x2 = ε(j + b2). (18)

Plugging (7) into the initial condition of problem (1), we find that

ui,−0 (x, 0) = 0, x ∈ G(i)
ε , x2 = ε(j + bi), i ∈ {1, 2}. (19)

In order to find conditions in the joint zoneQ(0)
0 we use the method of matched asymptotic

expansions for outer expansions (4), (7) and an inner expansion which will be constructed
in the next subsection.

3.2. Inner Expansion. In a neighborhood of the joint zone Q(0)
0 we introduce the “rapid”

coordinates ξ = (ξ1, ξ2), where ξ1 = −(r − d0)/ε and ξ2 = x2/ε. Here (r, x2, θ) ∈ R3 are
the cylindric coordinates: r =

√
x2

1 + x2
3, tan(θ) = x3/x1. The Laplace operator in the

coordinates (ξ1, ξ2, θ) has the form

∆x = ε−2∆ξ − ε−1 1

d0 − εξ1

∂

∂ξ1

+
1

(d0 − εξ1)2

∂2

∂θ2
. (20)

We seek the leading terms of the inner expansion in a neighborhood of Q(0)
0 in the form

uε(x, t) ≈ u+
0 (x, t)|r=d0 + ε

(
Z1(ξ)∂x2u

+
0 (x, t)|r=d0−

−
(
η(x2, t)Ξ1(ξ) + (1− η(x2, t))Ξ2(ξ)

)
∂ru

+
0 (x, t)|r=d0

)
+ . . . , (21)

where Z1, Ξ1, Ξ2 are functions, which are 1-periodic with respect to ξ2 and defined in the
union Π:=Π+∪Π−1 ∪Π−2 of the semiinfinite strips Π+ = {ξ ∈ R2 : ξ1 > 0, ξ2 ∈ (0, 1)}, Π−i =
{ξ ∈ R2 : ξ1 ≤ 0, ξ2 ∈ Ii(d0)}, i ∈ {1, 2}, (see definition of Ii(d0)), η is a function, which will
be defined from matching conditions.

Putting (21) into the differential equation of problem (1) with regard to (20) and into
the corresponding boundary conditions and collecting coefficients of the same powers of ε,
we get the junction-layer problems for Z1, Ξ1, Ξ2. The functions Ξ1 and Ξ2 are solutions of
the following homogeneous problem

−∆ξΞ = 0, in Π,

∂ξ2Ξ = 0, on (∂Π−1 ∪ ∂Π−2 ) ∩ {ξ ∈ R2 : ξ1 < 0},
∂ξ1Ξ = 0, on ∂Π ∩ {ξ ∈ R2 : ξ1 = 0},
∂pξ2Ξ|ξ2=0 = ∂pξ2Ξ|ξ2=1, p ∈ {0, 1}, ξ1 > 0.

(22)
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Main asymptotic relations for Ξ1, Ξ2 can be obtained from general results on the asymp-
totic behavior of solutions of elliptic problems in domains with different exits to infinity (see,
for instance, [29]). However, for the domain Π, we can define more exactly the asymptotic
relations for junction-layer solutions Ξ1, Ξ2 in the same way as in [18, 19].

Proposition 1. There exist two solutions Ξ1, Ξ2 ∈ H1
],loc(Π) to problem (22), which have

the following differentiable asymptotics

Ξ1 =


ξ1 +O(exp(−2πξ1)), ξ1 → +∞, ξ ∈ Π+,

α
(1)
1 +O(exp(πh−1

1 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−1 ,

h−1
2 (d0)ξ1 + α

(2)
1 +O(exp(πh−1

2 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−2 ,

(23)

Ξ2 =


ξ1 +O(exp(−2πξ1)), ξ1 → +∞, ξ ∈ Π+,

h−1
1 (d0)ξ1 + α

(1)
2 +O(exp(πh−1

1 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−1 ,

α
(2)
2 +O(exp(πh−1

2 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−2 .

(24)

Here H1
],loc(Π) = {u : Pi → R : u(ξ1, 0) = u(ξ1, 1) for any ξ1 > 0, u ∈ H1(ΠR) for any

R > 0}, ΠR = {ξ ∈ Π: −R < ξ1 < R}; α(i)
1 , α

(i)
2 , i ∈ {1, 2}, are some constants.

Any other solution of problem (22), which has a polynomial growth at infinity, can be
represented as a linear combination c0 + c1Ξ1 + c2Ξ2.

The function Z1 is a solution of the following problem
−∆ξZ = 0, in Π,

∂ξ2Z = −1, on (∂Π−1 ∪ ∂Π−2 ) ∩ {ξ ∈ R2 : ξ1 < 0},
∂ξ1Z = 0, on ∂Π ∩ {ξ ∈ R2 : ξ1 = 0},
∂pξ2Z|ξ2=0 = ∂pξ2Z|ξ2=1, p = i ∈ {0, 1}, ξ1 > 0.

(25)

Similarly to [18, 19, 28] it is easy to verify that there exists a unique solution Z1 ∈
H1
],loc(Π) with the following asymptotics

Z =


O(exp(−2πξ1)), ξ1 → +∞, ξ ∈ Π+,

−ξ2 + b1 + α
(1)
3 +O(exp(πh−1

1 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−1 ,

−ξ2 + b2 + α
(2)
3 +O(exp(πh−1

2 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−2 .

(26)

Now let us verify the matching conditions for outer expansions (4), (5) and inner expan-
sion (21), namely, the leading terms of the asymptotics of the outer expansions as ξ1 → ±0
must coincide with the leading terms of the asymptotics of the inner expansion as ξ1 → ±∞.
Near the point (x1, ε(j+ bi), x3) ∈ Q(0)

0 for any fixed t ∈ (0, T ) the function u+
0 has the follo-

wing asymptotics

u+
0 (x, t) ≈ u+

0 (x1, ε(j + bi), x3, t)|r=d0 + ε(ξ2 − j − bi)∂x2u+
0 (x1, ε(j + bi), x3, t)|r=d0−

−εξ1∂ru
+
0 (x1, ε(j + bi), x3, t)|r=d0 + . . . as ξ1 → 0+, (x, t) ∈ Ω0 × (0, T ).

Taking into account the asymptotics of Z1, Ξ1 and Ξ2 as ξ1 → +∞, we see that the matching
conditions are satisfied for expansions (4) and (21).
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For any t ∈ (0, T ) the asymptotics of (5) in the neighborhood of (x1, ε(j + bi), x3) ∈ Q(0)
0

are equal to

ui,−0 (x1, ε(j + bi), x3, t)|r=d0 + ε
(
ϕ

(i)
1 (x1, ε(j + bi), x3, t)|r=d0−

−ξ1∂ru
i,−
0 (x1, ε(j + bi), x3, t)|r=d0

)
+ . . . as ξ1 → 0−, (x, t) ∈ G(i)

ε (j)× (0, T ), i ∈ {1, 2}.
(27)

It follows from (23), (24) and (26) that the first terms of the asymptotics of (21) in the
neighborhood of (x1, ε(j + bi), x3) ∈ Q(0)

0 are

u+
0 (x1, ε(j + b1), x3, t)|r=d0 + ε

(
α

(1)
3 ∂x2u

+
0 (x1, ε(j + b1), x3, t)|r=d0−

−
(
α

(1)
1 η(ε(j + b1), t) + (h−1

1 (d0)ξ1 + α
(1)
2 )(1− η(ε(j + b1), t))

)
∂ru

+
0 (x1, ε(j + b1), x3, t)|r=d0

)
as ξ1 → −∞, (x, t) ∈ G(1)

ε (j)× (0, T ), (28)

u+
0 (x1, ε(j + b2), x3, t)|r=d0 + ε

(
α

(2)
3 ∂x2u

+
0 (x1, ε(j + b2), x3, t)|r=d0−

−
(
(h−1

2 (d0)ξ1 + α
(2)
1 )η(ε(j + b2), t) + α

(2)
2 (1− η(ε(j + b2), t))

)
∂ru

+
0 (x1, ε(j + b2), x3, t)|r=d0

)
as ξ1 → −∞, (x, t) ∈ G(2)

ε (j)× (0, T ). (29)

Comparing the first terms of (27), (28) with (29), we get

u+
0 (x, t) = ui,−0 (x, t), (x, t) ∈ Q(0)

0 × (0, T ), x2 = ε(j + bi), i ∈ {1, 2}. (30)

Comparing the second terms of (27), (28) with (29), we find that

ϕ
(i)
1 (x, t) = α

(i)
3 ∂x2u

+
0 (x, t), (x, t) ∈ Q(0)

0 × (0, T ), x2 = ε(j + bi), i ∈ {1, 2}, (31)

and

(1− η)h−1
1 (d0)∂ru

+
0 (x, t) = ∂ru

1,−
0 (x, t), (x, t) ∈ Q(0)

0 × (0, T ), x2 = ε(j + b1),

ηh−1
2 (d0)∂ru

+
0 (x, t) = ∂ru

2,−
0 (x, t), (x, t) ∈ Q(0)

0 × (0, T ), x2 = ε(j + b2).
(32)

Since the points {ε(j + bi) : j ∈ {0, 1, . . . , N − 1}, i ∈ {1, 2}} make up an ε-net on the
segment [0, l], we can extend equalities (12), (15), (16), (19) to the domains Di, equalities
(17), (18) to Q

(1)
0 and Q

(2)
0 , respectively, and equalities (30), (31) and (32) to Q

(0)
0 . As a

result, from equalities (32) we derive the relation

η(x2, t) =
h2(d0)∂ru

2,−
0 |r=d0

h1(d0)∂ru
1,−
0 |r=d0 + h2(d0)∂ru

2,−
0 |r=d0

, x2 ∈ (0, l), t ∈ (0, T ),

and obtain ∂ru+
0 = h1(d0)∂ru

1,−
0 + h2(d0)∂ru

2,−
0 , (x, t) ∈ Q(0)

0 × (0, T ).

By virtue of (30) and (31) we can define ϕ(i)
1 as follows

ϕ
(i)
1 (x, t) = α

(i)
3 ∂x2u

i,−
0 (x, t), (x, t) ∈ Di × (0, T ), i ∈ {1, 2}.

3.3. The homogenized problem. With the help of the first terms u+
0 , u

1,−
0 and u2,−

0 of
asymptotic expansions (4) and (5) we define the multi-sheeted function

U0(x, t) =


u+

0 (x, t), (x, t) ∈ Ω0 × (0, T ),

u1,−
0 (x, t), (x, t) ∈ D1 × (0, T ),

u2,−
0 (x, t), (x, t) ∈ D2 × (0, T ),
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or in a short form U0 = (u+
0 , u

1,−
0 , u2,−

0 ). It follows from the foregoing that the components
of U0 must satisfy the relations

∂tu
+
0 −∆xu

+
0 + ϑ0(u+

0 ) = f0, (x, t) ∈ Ω0 × (0, T ),

∂px2u
+
0 |S− = ∂px2u

+
0 |S+ , p ∈ {0, 1}, t ∈ (0, T ),

h1(r)∂tu
1,−
0 − divx̃(h1(r)∇x̃u

1,−
0 )+

+h1(r)ϑ0(u1,−
0 ) + 2ϑ1(u1,−

0 ) = h1(r)f0 + 2δβ,1g0, (x, t) ∈ D1 × (0, T ),

∂νu
1,−
0 + ϑ1(u1,−

0 ) = 0, (x, t) ∈ Q(1)
0 × (0, T ),

h2(r)∂tu
2,−
0 − divx̃

(
h2(r)∇x̃u

2,−
0

)
+

+h2(r)ϑ0(u2,−
0 ) + 2δα,1ϑ2(u2,−

0 ) = h2(r)f0 + 2δβ,1g0, (x, t) ∈ D2 × (0, T ),

∂νu
2,−
0 = 0, (x, t) ∈ Q(2)

0 × (0, T ),

u+
0 |Q(0)

0
= u1,−

0 |Q(0)
0

= u2,−
0 |Q(0)

0
, t ∈ (0, T ),

h1(d0)∂ru
1,−
0 + h2(d0)∂ru

2,−
0 = ∂ru

+
0 , (x, t) ∈ Q(0)

0 × (0, T ),

U0(x, 0) = 0.

(33)

These relations form the homogenized problem for problem (1).
We introduce the space V0:=L2(Ω0) × L2(D1) × L2(D2) of multi-sheeted functions u =

(u0, u1, u2) defined as follows

u(x) =


u0(x), x ∈ Ω0,

u1(x), x ∈ D1,

u2(x), x ∈ D2.

The space V0 is equipped with natural inner product. Also we introduce the anisotropic
Sobolev space of multi-sheeted functions

H0:={u = (u0, u1, u2) ∈ V0 : u0 ∈ H1(Ω0), u0|S− = u0|S+ ;

∃∂xjui ∈ L2(Di), j = 1, 3, i = 1, 2; u0|Q(0)
0

= u1|Q(0)
0

= u2|Q(0)
0
}

with the inner product

(u,v)H0 =

∫
Ω0

(∇xu0 · ∇xv0 + u0v0)dx+
2∑
i=1

∫
Di

(∇x̃ui · ∇x̃vi + uivi)dx.

It is obvious that H0 is continuously embedded in V0.
Consider the space

W0:={ϕ = (ϕ0, ϕ1, ϕ2) ∈ L2(0, T ;H0), ∃∂tϕ:=ϕ′ ∈ L2(0, T ;V0)}.
A function U0 = (u+

0 , u
1,−
0 , u1,−

0 ) ∈ L2(0, T ;H0) is a weak solution of problem (33) if for
every function ϕ = (ϕ0, ϕ1, ϕ2) ∈ W0 the integral identity∫

Ω0

(u+
0 ϕ0)|t=Tdx+

2∑
i=1

∫
Di

(hiu
i,−
0 ϕi)|t=Tdx−

∫ T

0

(∫
Ω0

u+
0 ∂tϕ0dx+

2∑
i=1

∫
Di

hiu
i,−
0 ∂tϕidx +

+

∫
Ω0

(∇xu
+
0 · ∇xϕ0 + ϑ0(u+

0 )ϕ0)dx+
2∑
i=1

∫
Di

hi(∇x̃u
i,−
0 · ∇x̃ϕi + ϑ0(ui,−0 )ϕi)dx+

+ 2

∫
D1

ϑ1(u1,−
0 )ϕ1dx+ h1(d0)

∫
Q

(1)
0

ϑ1(u1,−
0 )ϕ1dσx + 2δα,1

∫
D2

ϑ2(u2,−
0 )ϕ2dx

)
dt =
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=

∫ T

0

(∫
Ω0

f0ϕ0dx+
2∑
i=1

∫
Di

(hif0 + 2δβ,1g0)ϕidx

)
dt

holds.
Similarly as in [26] we can prove the existence and the uniqueness of a weak solution of

problem (33).

4. Approximation and asymptotic estimates. Let U0 = (u+
0 , u

1,−
0 , u2,−

0 ) be the unique
weak solution of problem (33). With the help of U0 and the solutions Z1, Ξ1, Ξ2 of junction-
layer problems (22) and (25) we construct the main terms of expansions (4), (5) and (21).
Consider the smooth cut-off function χ0(r), which is equal to 1 as |r − d0| < δ0/2 and 0 as
|r − d0| > δ0, where δ0 ∈ (0, δ) is some fixed number. Matching the outer expansions with
the inner expansion with the help of χ0, we define the approximation function Rε

Rε(x, t):=R
+
ε (x, t) = u+

0 (x, t) + εχ0(r)N+(ξ, x2, θ, t), (x, t) ∈ Ω0 × (0, T ), (34)

Rε(x, t):=R
i,−
ε (x, t) = ui,−0 (x, t) + ε

(
Ỹi

(x2

ε

)
∂x2u

i,−
0 (x, t) + χ0(r)N i,−(ξ, x2, θ, t)

)
,

(x, t) ∈ G(i)
ε (j)× (0, T ), i ∈ {1, 2}. (35)

Here

N+(ξ, x2, θ, t) = Z1(ξ)∂x2u
+
0 |r=d0 +

(
ξ1 − η(x2, t)Ξ1(ξ)− (1− η(x2, t))Ξ2(ξ)

)
∂ru

+
0 |r=d0 ,

N i,−(ξ, x2, θ, t) = (Z1(ξ)− Ỹi(ξ2))∂x2u
+
0 |r=d0+

+
(
Yi(ξ1, x2, t)− η(x2, t)Ξ1(ξ)− (1− η(x2, t))Ξ2(ξ)

)
∂ru

+
0 |r=d0 ,

where Ỹi(s):=− s+ [s] + bi + α
(i)
3 , [s] is the integer part of s ∈ R, i ∈ {1, 2}, and

Y1(ξ1, x2, t):=h
−1
1 (d0)ξ1(1− η(x2, t)), Y2(ξ1, x2, t):=h

−1
2 (d0)ξ1η(x2, t),

ξ1 ≤ 0, x2 ∈ (0, l), t ∈ (0, T ).

Obviously, Rε ∈ Wε. Due to the initial condition of problem (33) we have Rε|t=0 = 0 in Ωε.

Theorem 1. Let f0(x, t), (x, t) ∈ Ω1 × [0, T ], and g0(x, t), (x, t) ∈ D1 × [0, T ], be smooth
functions such that ∂px2f0|S− = ∂px2f0|S+ for all t ∈ [0, T ], p ∈ {0, 1}, f0(x, 0) = g0(x, 0) = 0.

Then for any µ > 0 there exist positive constants ε0, c0 such that

‖uε −Rε‖L2(0,T ;H1(Ωε)) + max
t∈[0,T ]

‖uε(·, t)−Rε(·, t)‖L2(Ωε) ≤

≤ c0(‖fε − f0‖L2(Ωε×(0,T )) + ε1−µ + εδα,1(2−α)+α−1 + εβ−1‖gε − g0‖
δβ,1
L2(D1×(0,T ))) (36)

for all ε ∈ (0, ε0), where uε is the solution of problem (1), and Rε is defined by (34) and (35).

Proof. Discrepancies in domain Ω0. Notice that the first two relations in (33) and the
assumptions of the theorem yield ∂2

x2x2
u+

0 |S− = ∂2
x2x2

u+
0 |S+ . Then, according to the properties

of Z1, Ξ1, Ξ2 and u+
0 , the function R+

ε satisfies the boundary conditions of problem (1) on
∂Ωε ∩ ∂Ω0.

Problems (22) and (25) imply

∆ξN+ = 0, ∆ξN i,− = 0 ξ ∈ Π, x2 ∈ (0, l), θ ∈ [0, 2π], t ∈ [0, T ], i ∈ {1, 2}. (37)
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Observe that the following equality holds

∆x̃(χ0(r)N ) = divx̃(N∇x̃χ0(r)) +∇x̃χ0(r) · ∇x̃N + χ0(r)∆x̃N , N = N (ξ, x2, θ). (38)

Using (20), (33), (37) and (38), we get

∂tR
+
ε (x, t)−∆xR

+
ε (x, t)− fε(x, t) = f0(x, t)− fε(x, t) + εχ0(r)∂tN+(ξ, x2, θ, t)−

−ϑ0(u+
0 (x, t)) + χ0(r)(r−1∂ξ1N+(ξ, x2, θ, t)− 2∂2

ξ2x2
N+(ξ, x2, θ, t))−

−εdivx̃(N+|ξ1=−(r−d0)/ε∇x̃χ0(r)) + χ′0(r)∂ξ1N+(ξ, x2, θ, t)−
−εχ0(r)∂2

x2x2
N+(ξ, x2, θ, t)− εr−2χ0(r)∂2

θθN+(ξ, x2, θ, t), (x, t) ∈ Ω0 × (0, T ). (39)

We multiply (39) by a test function ψ ∈ Wε such that ψ(x, T ) = 0, integrate by parts in
Ω0 × (0, T ) and take into account the properties of R+

ε . This yields∫ T

0

(
−
∫

Ω0

R+
ε ∂tψdx+

∫
Ω0

(∇xR
+
ε · ∇xψ + ϑ0(R+

ε )ψ)dx−
∫

Θε

∂rR
+
ε ψdσx −

∫
Ω0

fεψdx

)
dt =

= I+
0 (ε, ψ) + . . .+ I+

5 (ε, ψ) (40)

for all ψ ∈ Wε, ψ(x, T ) = 0, where

I+
0 (ε, ψ):=

∫ T

0

∫
Ω0

(f0 − fε)ψdxdt, I+
1 (ε, ψ):=ε

∫ T

0

∫
Ω0

χ0∂tN+ψdxdt,

I+
2 (ε, ψ):=

∫ T

0

∫
Ω0

(ϑ0(R+
ε )− ϑ0(u+

0 ))ψdxdt, I+
3 (ε, ψ):=

∫ T

0

∫
Ω0

χ0(r−1∂ξ1N+ − ∂2
x2ξ2
N+)ψdxdt,

I+
4 (ε, ψ):=

∫ T

0

(
ε

∫
Ω0

N+∇x̃χ0 · ∇x̃ψdx+

∫
Ω0

χ′0∂ξ1N+ψdx

)
dt,

I+
5 (ε, ψ):=ε

∫ T

0

(∫
Ω0

χ0∂x2N+∂x2ψdx+

∫
Ω0

r−2χ0∂θN+∂θψdx

)
dt.

Discrepancies in the thin discs. One can readily check that

∂rR
1,−
ε = −ϑ1(u1,−

0 )− εỸ1

(x2

ε

)
∂x2ϑ1(u1,−

0 ), (x, t) ∈ Q(1)
ε × (0, T ),

∂rR
2,−
ε = 0, (x, t) ∈ Q(2)

ε × (0, T ), (41)

∂rR
i,−
ε = εỸi

(x2

ε

)
∂2
rx2
ui,−0 + ∂rR

+
ε , (x, t) ∈ Θ(i)

ε × (0, T ), i ∈ {1, 2}. (42)

Taking into account (9) and that functions hi are constant on a neighborhood of d0, we
derive that

∂νR
i,−
ε =

ε√
1 + 4−1ε2|h′i(r)|2

(
±Ỹi

(x2

ε

)
∂2
x2x2

ui,−0 ± χ0
∂

∂x2

(N i,−|ξ2=x2/ε) −

−1

2
∇x̃hi · ∇x̃(u

i,−
0 + εỸi

(x2

ε

)
∂x2u

i,−
0 )

)
, (x, t) ∈ S(i)

ε × (0, T ), i ∈ {1, 2}, (43)

where “+” and “−” refer to the left and the right parts of the lateral surfaces of the thin
discs, respectively.
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Relations (20), (33), (37) and (38) yield

∂tR
i,−
ε (x, t)−∆xR

i,−
ε (x, t)− fε(x, t) = f0(x, t)− fε(x, t) + ε(Ỹi(x2/ε)∂

2
tx2
ui,−0 +

+χ0(r)∂tN i,−(ξ, x2, θ, t))− ϑ0(ui,−0 ) + χ0(r)(r−1∂ξ1N i,−(ξ, x2, θ, t)− 2∂2
ξ2x2
N i,−(ξ, x2, θ, t))−

−εdivx̃(N i,−|ξ1=−(r−d0)/ε∇x̃χ0(r)) + χ′0(r)∂ξ1N i,−(ξ, x2, θ, t)− εχ0(r)∂2
x2x2
N i,−(ξ, x2, θ, t)−

−εχ0(r)r−2∂2
θθN i,−(ξ, x2, θ, t) +∇x̃(lnhi(r)) · ∇x̃u

i,−
0 − εdivx

(
Ỹi(x2/ε)∇x(∂x2u

i,−
0 )
)
−

−2(1− δi,2(1− δα,1))h−1
i (r)ϑi(u

i,−
0 ) + 2δβ,1h

−1
i (r)g0(x, t), (x, t) ∈ G(i)

ε × (0, T ). (44)

Consider the integral identity∫
S
(i)
ε

εhi(r)

2
√

1 + 4−1ε2|h′i(r)|2
ϕdσx =

∫
G

(i)
ε

ϕdx− ε
∫
G

(i)
ε

Yi

(x2

ε

)
∂x2ϕdx, i ∈ {1, 2}, (45)

where Yi(s) = −s + [s] + bi and [s] is the integer part of s, ϕ ∈ H1(G
(i)
ε ) is an arbitrary

function. We multiply (44) by a test function ψ ∈ Wε, ψ(x, T ) = 0, and integrate by parts
in G(i)

ε × (0, T ), using (45) and taking into account relations (41), (42), (43). This yields∫ T

0

(
−
∫
G

(i)
ε

R1,−
ε ∂tψdx+

∫
G

(1)
ε

(∇xR
1,−
ε · ∇xψ + ϑ0(R1,−

ε )ψ)dx+ ε

∫
S
(1)
ε

ϑ1(R1,−
ε )ψdσx +

+

∫
Q

(1)
ε

ϑ1(R1,−
ε )ψdσx +

∫
Θ

(1)
ε

∂rR
+
ε ψdσx −

∫
G

(1)
ε

fεψdx− εβ
∫
S
(1)
ε

gεψdσx

)
dt =

= I1,−
0 (ε, ψ) + . . .+ I1,−

8 (ε, ψ), (46)∫ T

0

(
−
∫
G

(2)
ε

R2,−
ε ∂tψdx+

∫
G

(2)
ε

(∇xR
2,−
ε · ∇xψ + ϑ0(R1,−

ε )ψ)dx+ εα
∫

Υ
(2)
ε

ϑ2(R2,−
ε )ψdσx +

+

∫
Θ

(2)
ε

∂rR
+
ε ψdσx −

∫
G

(2)
ε

fεψdx− εβ
∫

Υ
(2)
ε

gεψdσx

)
dt = I2,−

0 (ε, ψ) + . . .+ I2,−
8 (ε, ψ) (47)

for all ψ ∈ Wε, ψ(x, T ) = 0, where

I i,−0 (ε, ψ):=

∫ T

0

∫
G

(i)
ε

(f0 − fε)ψdxdt,

I i,−1 (ε, ψ):=ε

∫ T

0

∫
G

(i)
ε

(Ỹi

(x2

ε

)
∂2
x2t
ui,−0 + χ0(r)∂tN i,−)ψdxdt,

I i,−2 (ε, ψ):=

∫ T

0

∫
G

(i)
ε

(ϑ0(Ri,−
ε )− ϑ0(ui,−0 ))ψdxdt,

I i,−3 (ε, ψ):=

∫ T

0

∫
G

(i)
ε

χ0(r−1∂ξ1N i,− − ∂2
x2ξ2
N i,−)ψdxdt,

I i,−4 (ε, ψ):=

∫ T

0

(
ε

∫
G

(i)
ε

N i,−∇x̃χ0 · ∇x̃ψdx+

∫
G

(i)
ε

χ′0∂ξ1N i,−ψdx

)
dt,

I i,−5 (ε, ψ):=ε

∫ T

0

(∫
G

(i)
ε

χ0∂x2N i,−∂x2ψdx+

∫
G

(i)
ε

r−2χ0∂θN i,−∂θψdx

)
dt,

I i,−6 (ε, ψ):=ε

∫ T

0

(∫
G

(i)
ε

Yi

(x2

ε

)
∂x2(ψ∇x̃u

i,−
0 · ∇x̃ lnhi)dx+

+

∫
G

(i)
ε

Ỹi

(x2

ε

)
∇x(∂x2u

i,−
0 ) · ∇xψdx

)
dt, i ∈ {1, 2},
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I1,−
7 (ε, ψ):=

∫ T

0

(
−ε
∫
S
(1)
ε

ϑ1(u1,−
0 )ψ√

1 + 4−1ε2|h′1(r)|2
dσx − 2ε

∫
G

(1)
ε

Y1

(x2

ε

)
h−1

1 ∂x2(ϑ1(u1,−
0 )ψ)dx+

+ε

∫
S
(1)
ε

ϑ1(R1,−
ε )ψdσx +

∫
Q

(1)
ε

(ϑ1(R1,−
ε )− ϑ1(u1,−

0 )− εỸ1

(x2

ε

)
∂x2ϑ1(u1,−

0 ))ψdσx

)
dt,

I2,−
7 (ε, ψ):=

∫ T

0

(
−εδα,1

∫
S
(2)
ε

ϑ2(u2,−
0 )ψ√

1 + 4−1ε2|h′2(r)|2
dσx−

−2εδα,1

∫
G

(2)
ε

Y2

(x2

ε

)
h−1

2 ∂x2(ϑ2(u2,−
0 )ψ)dx+ εα

∫
Υ

(2)
ε

ϑ2(R2,−
ε )ψdσx

)
dt,

I1,−
8 (ε, ψ):=

∫ T

0

(
εδβ,1

∫
S
(1)
ε

g0ψ√
1 + 4−1ε2|h′1(r)|2

dσx+

+ 2εδβ,1

∫
G

(1)
ε

Y1

(x2

ε

)
h−1

1 ∂x2(g0ψ)dx− εβ
∫
S
(1)
ε

gεψdσx

)
dt,

I2,−
8 (ε, ψ):=

∫ T

0

(
εδβ,1

∫
S
(2)
ε

g0ψ√
1 + 4−1ε2|h′2(r)|2

dσx+

+ 2εδβ,1

∫
G

(2)
ε

Y2

(x2

ε

)
h−1

2 ∂x2(g0ψ)dx− εβ
∫

Υ
(2)
ε

gεψdσx

)
dt.

Asymptotic estimates. After summing (40), (46) and (47) we see that the function Rε defined
by (34) and (35) satisfies the integral identity

Fε(ψ) =

∫ T

0

(
−
∫

Ωε

Rε∂tψdx+

∫
Ωε

(∇xRε · ∇xψ + ϑ0(Rε)ψ)dx+ ε

∫
S
(1)
ε

ϑ1(Rε)ψdσx +

+

∫
Q

(1)
ε

ϑ1(Rε)ψdσx + εα
∫

Υ
(2)
ε

ϑ2(Rε)ψdσx −
∫

Ωε

fεψdx− εβ
∫
S
(1)
ε ∪Υ

(2)
ε

gεψdσx

)
dt (48)

for all ψ ∈ Wε, ψ|t=T = 0, where Fε(ψ):=I±0 + . . .+ I±5 + I−6 + I−7 + I−8 , I−k :=I1,−
k + I2,−

k , k ∈
{0, 1, . . . , 8}, I±m:=I+

m + I−m, m ∈ {0, 1, . . . , 5}.
It follows from (3) and (48) that∫ T

0

(
−
∫

Ωε

(Rε − uε)∂tψdx+

∫
Ωε

(∇x(Rε − uε) · ∇xψ + (ϑ0(Rε)− ϑ0(uε))ψ)dx +

+ε

∫
S
(1)
ε

(ϑ1(Rε)− ϑ1(uε))ψdσx +

∫
Q

(1)
ε

(ϑ1(Rε)− ϑ1(uε))ψdσx+

+εα
∫

Υ
(2)
ε

(ϑ2(Rε)− ϑ2(uε))ψdσx

)
dt = Fε(ψ) (49)

for all ψ ∈ Wε, ψ|t=T = 0.
Now we are going to estimate Fε(ψ). With the help of the Cauchy-Schwartz-Bunyakovskii

inequality we obtain |I±0 (ε, ψ)| ≤ ‖fε − f0‖L2(Ωε×(0,T ))‖ψ‖L2(0,T ;H1(Ωε)), |I±1 (ε, ψ)| ≤
C1ε‖ψ‖L2(0,T ;H1(Ωε)).

Remark 1. Here and further all constants ci, Ci in asymptotic estimates are independent
of ε.
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By (2), Taylor’s formula and the Cauchy-Schwartz-Bunyakovskii inequality we derive
that

|I+
2 (ε, ψ)| ≤ c0ε

∣∣∣∣∫ T

0

∫
Ω0

χ0N+ψdxdt

∣∣∣∣ ≤ c1ε‖ψ‖L2(0,T ;H1(Ωε)).

Similarly we estimate I−2 . Thus, |I±2 (ε, ψ)| ≤ C2ε‖ψ‖L2(0,T ;H1(Ωε)).
Since the functions ∂ξ1N+, ∂2

x2ξ2
N+, ∂ξ1N i,−, ∂2

x2ξ2
N i,− exponentially decrease as |ξ1| →

∞ (see (23), (24) and (26)), then from Lemma 3.1 in [6] we derive that

∀µ > 0 ∃C3 > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0) : |I±3 (ε, ψ)| ≤ C3ε
1−µ‖ψ‖L2(0,T ;H1(Ωε)).

The integrals in I±4 (ε, ψ) are in fact over

(supp(χ′0(r)) ∩ Ωε)× (0, T ) = {x ∈ Ωε : δ0/2 < |r − d0| < δ0} × (0, T ),

where, according to (22) and (25), the functionsN+, ∂ξ1N+, ∂ξ1N i,− are exponentially small,
and N i,− can be estimated by some constant c2. Thus, |I±4 (ε, ψ)| ≤ C4ε‖ψ‖L2(0,T ;H1(Ωε)).

The integrals in I±5 are over {x ∈ R3 : |r−d0| < δ0} and they can be estimated, extracting
if necessary the exponentially decreasing part in the corresponding integrand and then using
the Cauchy-Schwartz-Bunyakovskii inequality. Consider, for example, the integral∣∣∣∣∫ T

0

∫
G

(1)
ε

χ0∂x2N 1,−∂x2ψdxdt

∣∣∣∣ =

∣∣∣∣∫ T

0

∫
G

(1)
ε

χ0

(
(Z1 − Ỹ1)∂2

x2x2
u+

0 |r=d0 −

−(h−1
1 (d0)ξ1 + Ξ1 − Ξ2)∂x2η∂ru

+
0 |r=d0+

+(h−1
1 (d0)ξ1(1− η)− ηΞ1 − (1− η)Ξ2)∂2

x2r
u+

0 |r=d0
)
∂x2ψdxdt

∣∣∣∣ ≤
≤ c3‖ψ‖L2(0,T ;H1(Ωε))

(√∫ T

0

∫
G

(1)
ε

χ0|Z1 − Ỹ1|2dxdt +

+‖α(1)
1 η + α

(1)
2 (1− η) + (α

(1)
1 − α

(1)
2 )∂x2η‖L2(G

(1)
ε ×(0,T ))

+

+

√∫ T

0

∫
G

(1)
ε

χ0

∣∣h−1
1 (d0)ξ1 + (Ξ1 − α(1)

1 )− (Ξ2 − α(1)
2 )
∣∣2dxdt+

+

√∫ T

0

∫
G

(1)
ε

χ0

∣∣η(Ξ1 − α(1)
1 ) + (1− η)(Ξ2 − h−1

1 (d0)ξ1 − α(1)
2 )
∣∣2dxdt) ≤

≤ c4‖ψ‖L2(0,T ;H1(Ωε))

(√
2πld0ε‖Z1 − Ỹ1‖L2(Π−

1 ) +

√
|G(1)

ε | +

+
√

2πld0ε‖h−1
1 (d0)ξ1 + (Ξ1 − α(1)

1 )− (Ξ2 − α(1)
2 )‖L2(Π−

1 )+

+
√

2πld0ε‖η(Ξ1 − α(1)
1 ) + (1− η)(Ξ2 − h−1

1 (d0)ξ1 − α(1)
2 )‖L2(Π−

1 )

)
,

where |G(1)
ε | is the measure of G(1)

ε . Relations (23), (24) and (26) show that the norms in the
right-hand side of the last inequality are bounded in ε. Similarly we can estimate the rest of
the integrals in I±5 (ε, ψ). As a result, we obtain |I±5 (ε, ψ)| ≤ C5ε‖ψ‖L2(0,T ;H1(Ωε)).

Remark 2. The constants C4 and C5 depend on

sup
x∈Q(0)

0 , t∈(0,T )

∣∣∣∣ ∂|α|

∂xα1
1 ∂x

α2
2 ∂x

α3
3

u+
0 (x, t)

∣∣∣∣ , |α| = α1 + α2 + α3 ≤ 2, αk ≥ 0, k ∈ {1, 2, 3}.
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Extending homogenized problem (33) periodically in x2 through the planes {x ∈ R3 : x2 = 0}
and {x ∈ R3 : x2 = l} and taking into account the assumptions for f0 and g0, by virtue of
classical results on the smoothness of solutions to boundary-value problems we conclude that
these quantities are bounded.

Since f0 is smooth, one has ui,−0 ∈ L2(0, T ;H2(Di)), i = 1, 2. Consequently,

|I−6 (ε, ψ)| ≤ c5ε

2∑
i=1

(‖ui,−0 ‖L2(0,T ;H1(Di)) + ‖∂x2u
i,−
0 ‖L2(0,T ;H1(Di)))‖ψ‖L2(0,T ;H1(Ωε)) ≤

≤ C6ε‖ψ‖L2(0,T ;H1(Ωε)).

In order to estimate I−7 we consider summand I2,−
7 with α = 1. Obviously, the module

of the second integral in I2,−
7 can be estimated by c6ε‖ψ‖L2(0,T ;H1(Ωε)). Using (2), Taylor’s

formula and the obvious equality

1− 1

a
=
a2 − 1

a2 + a
(a2 + a 6= 0)

we derive that the absolute value of the sum of the first and third integrals in I2,−
7 can be

evaluated by ∣∣∣∣∣4−1ε3

∫ T

0

∫
S
(2)
ε

|h′2(r)|2ϑ2(u2,−
0 )ψ

1 + 4−1ε2|h′2(r)|2 +
√

1 + 4−1ε2|h′2(r)|2
dσxdt

∣∣∣∣∣+
+c7ε

2

∣∣∣∣∫ T

0

∫
S
(2)
ε

(Ỹ2

(x2

ε

)
∂x2u

2,−
0 + χ0N 2,−)ψdxdt

∣∣∣∣+ ε

∣∣∣∣∫ T

0

∫
Q

(2)
ε

ϑ2(Rε)ψdσxdt

∣∣∣∣
=:J1(ε, ψ) + J2(ε, ψ) + J3(ε, ψ).

With the help of (45) we obtain J1(ε, ψ) + J2(ε, ψ) ≤ c8ε‖ψ‖L2(0,T ;H1(Ωε)). Taking into
account (2), properties of the trace operator and the fact that f0 is smooth, we deduce
J3(ε, ψ) ≤ c9ε‖ψ‖L2(0,T ;H1(Ωε)). Thus, in the case when α = 1 we have

|I2,−
7 (ε, ψ)| ≤ c10ε‖ψ‖L2(0,T ;H1(Ωε)).

In the case when α > 1 by (45) we obtain |I2,−
7 (ε, ψ)| ≤ c11ε

α−1‖ψ‖L2(0,T ;H1(Ωε)). Simi-
larly to I2,−

7 (ε, ψ), we estimate I1,−
7 (ε, ψ) and I−8 (ε, ψ). As a result, we get |I1,−

7 (ε, ψ)| ≤
C7ε‖ψ‖L2(0,T ;H1(Ωε)) and

|I−8 (ε, ψ)| ≤ C8

{
(ε+ ‖g0 − gε‖L2(D1×(0,T )))‖ψ‖L2(0,T ;H1(Ωε)), β = 1,

εβ−1‖ψ‖L2(0,T ;H1(Ωε)), β > 1.

Thus,

|Fε(ψ)| ≤ C7(‖fε − f0‖L2(Ωε×(0,T )) + ε1−µ + εδα,1(2−α)+α−1+

+εβ−1‖gε − g0‖
δβ,1
L2(D1×(0,T )))‖ψ‖L2(0,T ;H1(Ωε)),

where µ > 0 is an arbitrary number. From the last estimate with the help of standard scheme
we deduce inequality (36).
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5. Discussion of the obtained results. As we can see from the obtained results, the
homogenized problem (33) for problem (1) is a nonstandard boundary-value problems for
multi-sheeted function U0 in anisotropic Sobolev space W0 (see Section ). This problem
consists of three boundary-value problems (in domains Ω0 and Di, i ∈ {1, 2}), connected
with each other by the conjugation conditions (on Q(0)

0 ).
The nonhomogeneous Robin boundary conditions on the lateral surfaces of the thin discs

in problem (1) are transformed as ε → 0 into new summands in the differential equations
in domains Di, i ∈ {1, 2}, in problem (33). These summands show us the influence of the
perturbed parameters α and β. If α > 1, then the summand 2δα,1ϑ1(u2,−

0 ) vanishes. From
physical point of view this means that the outer heat conduction coefficient is too small, and
we can neglect this heat exchange. If β > 1, then summands 2δβ,1g0 vanish, which means
that the temperature of the environment is too small, and we can consider it being equal to
zero.

Functions hi, i ∈ {1, 2}, which describe the relative thickness of the thin discs from the
i-th level, are transformed into the coefficients of the differential equations in domains Di,
respectively. The variable x2 is involved as a parameter in the boundary-value problems in
Di, i ∈ {1, 2}, which shows us the influence of the type of thick junction Ωε on the asymptotic
behavior of solution uε.

From results proved in the present paper it follows that for applied problems in thick
junctions we can use the homogenized problem (33), which is simpler, instead of the initial
problem (1) with sufficient plausibility.

Acknowledge. The author is grateful to professor T. A. Mel’nyk for the statement of
problem, attention during it’s solving and discussion of the obtained results.
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