Balleans and filters

Author O. V. Petrenko, I. V. Protasov
opetrenko72@gmail.com, i.v.protasov@gmail.com
Department of Cybernetics, Kyiv University

Abstract A ballean (equivalently, a coarse structure) is an asymptotic counterpart of a uniform topo- logical space.We introduce three new constructions (namely, a ballean-filter mix, a ballean-ideal mix and a filter product of directed sets) to give some balleans with extremal properties. In particular, we construct a non-metrizable Frechet group ballean.
Keywords ballean; ballean-filter mix; ballean-ideal mix
Reference 1. T. Banakh, N. Lyaskovska, Completeness of translation invariant ideals in groups, Ukr. Mat. J., 62 (2010), 1022–1031.

2. T. Banakh, I. Zarichnyi, The coarse characterization of homogeneous ultra-metric spaces, Groups, Geometry and Dynamics, 5 (2011), 691–728.

3. A. Dranishnikov, M. Zarichnyi, Universal spaces for asymptotic dimension, Topology Appl., 140 (2004), 203–225.

4. R. Engelking, General Topology, PWN, Warszawa, 1985.

5. O. Petrenko, I.V. Protasov, Balleans and G-spaces, manuscript.

6. I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., V.11, VNTL Publishers, Lviv, 2003.

7. I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007.

8. O. Protasova, Maximal balleans, Appl. Gen. Topology, 7 (2006), 151–163.

9. J. Roe, Lectures on Coarse Geometry, University Lecture Series, V.31, Amer. Math. Soc., Providence, RI, 2003.

Pages 3-11
Volume 38
Issue 1
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML