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Боллеан (эквивалентно, грубая структура) — это асимптотический двойник равномер-
ного топологического пространства. Предлагаются три новые конструкции (смесь болле-
ана и фильтра, смесь боллеана и идеала, фильтрованное произведение) для построения
боллеанов с экстремальными свойствами. В частности, построен неметризуемый группо-
вой боллеан со свойством Фреше.

Following [6, 7], we say that a ball structure is a triple B = (X,P,B), where X, P are
non-empty sets and, for every x ∈ X and α ∈ P , B(x, α) is a subset of X which is called
a ball of radius α around x. It is supposed that x ∈ B(x, α) for all x ∈ X and α ∈ P . The
set X is called the support of B, P is called the set of radii.

Given any x ∈ X,A ⊆ X,α ∈ P we put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A,α) =
⋃
a∈A

B(a, α).

A ball structure B = (X,P,B) is called a ballean if

• for any α, β ∈ P , there exist α′, β′ such that, for every x ∈ X,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β′);

• for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, α), β) ⊆ B(x, γ).

A ballean B on X can also be determined in terms of entourages of the diagonal ∆X of
X ×X, in this case it is called a coarse structure ([9]).

We suppose that all balleans under consideration are connected, i.e. for any x, y ∈ X
there exists α ∈ P such that y ∈ B(x, α).
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Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans. A mapping f : X1 → X2 is called a
≺-mapping if, for every α ∈ P1, there exists β ∈ P2 such that, for every x ∈ X1, f(B1(x, α)) ⊆
B2(f(x), β). If there exists a bijection f : X1 → X2 such that f and f−1 are ≺-mappings,
B1 and B2 are called asymorphic. If X1 = X2 and the identity mapping id : X1 → X2 is a
≺-mapping, we write B1 ≺ B2. If B1 ≺ B2 and B2 ≺ B1, we identify B1 and B2, and write
B1 = B2.

Let G be a group, I be an ideal in the Boolean algebra PG of all subsets of G, i.e. ∅ ∈ I
and if A,B ∈ I and A′ ⊆ A then A ∪ B ∈ I and A′ ∈ I. An ideal I is called a group ideal
if, for all A,B ∈ I, we have AB ∈ I and A−1 ∈ I.

Now let X be a G-space with the action G×X → X, (g, x) 7→ gx, and let I be a group
ideal on G such that

⋃
{Ax0 : A ∈ I} = X for some x0 ∈ X. We define a ballean B(G,X, I)

as a triple (X, I, B) where B(x,A) = Ax∪{x} for all x ∈ X, A ∈ I. By [5, Theorem 1], every
ballean B with the support X is asymorphic to the ballean B(G,X, I) for some group G of
permutations of X and some group ideal I on G. In the case X = G and the left regular
action G on X, we denote B(G,X, I) by (G, I) and say that (G, I) is a group ballean.

Given a ballean B = (X,P,B), a subset A ⊆ X is called

• large if there exists α ∈ P such that X = B(A,α);

• thick if X \ A is not large;

• small if L \ A is large for each large subset L of X;

• bounded if A ⊆ B(x, α) for some x ∈ X,α ∈ P ;
• thin if, for each α ∈ P , there exists a bounded subset V ofX such that B(a, α)∩A = {a}

for each a ∈ A \ V .

By definition, two balleans B = (X,P,B) and B′ = (X ′, P ′, B′) are coarsely equivalent
if there exist large subsets A ⊆ X, A′ ⊆ X ′ such that the subballeans BA = (A,P,BA),
B′′A = (A′, P ′, B′A′) are asymorphic, where BA(x, α) = A∩B(x, α), B′A′(y, β) = A′∩B′(y, β).

In this paper, we introduce three constructions (namely, a ballean-filter mix, a ballean-
ideal mix and a filter product of directed sets) to give some examples of balleans with
extremal properties. In particular, we construct a non-metrizable Fréchet group ballean.

1. Thin subsets and asymptotically isolated ball. Let B = (X,P,B) be a ballean,
α ∈ P . We use the natural preordering on P : α < β if and only if B(x, α) ⊂ B(x, β) for
every x ∈ X.

We say that a subset Y ⊆ X has asymptotically isolated α-balls if, for every β > α, there
exists y ∈ Y such that B(y, β) = B(y, α), so B(y, β) \B(y, α) = ∅. If Y has asymptotically
isolated α-balls for some α ∈ P , we say that Y has an asymptotically isolated balls. For the
case of metric balleans, this notion was introduced in [2].

In what follows, we assume that the set P of radii has a distinguished element 0 such
that B(x, 0) = {x} for each x ∈ X, B(x, α) = B∗(x, α) and write β > α if B(x, α) ⊆ B(x, β)
for all x ∈ X.

If the support X of B is thin (unbounded), we say that B is thin (unbounded).

Theorem 1. An unbounded ballean B = (X,P,B) is thin if and only if each unbounded
subset Y ⊆ X has asymptotically isolated 0-balls.

Proof. We suppose that B is not thin. Then there is α ∈ P such that, for each bounded
subset V of X, we can choose x(V ) ∈ X \ V such that |B(x(V ), α)| > 1. We put Y =
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{x(V ) : V is a bounded subset of X}. Clearly, Y is unbounded and |B(y, α)| > 1 for each
y ∈ Y , so Y has no asymptotically isolated 0-balls.

If B is thin, for each α ∈ P , there is a bounded subset V such that |B(x, α)| = 1 for
each x ∈ X \ V . If Y is unbounded then Y ∩ (X \ V ) 6= ∅ so Y has asymptotically isolated
0-balls.

We say that B is coarsely thin if B is coarsely equivalent to some thin ballean.

Theorem 2. For an unbounded ballean B = (X,P,B), the following statements are equi-
valent:

(i) B is coarsely thin;

(ii) X contains a large thin subset;

(iii) there exists α ∈ P such that each unbounded subset Y ⊆ X has asymptotically isolated
α-balls.

Proof. (i)⇒ (ii). Evident.
(ii) ⇒ (iii). Let T be a large thin subset of X, we take α ∈ P such that X = B(T, α) and
choose δ ∈ P such that for each x ∈ X

B(B(x, α), α) ⊆ B(x, δ).

We show that every unbounded subset Y of X has asymptotically isolated δ-balls. Let β ∈ P ,
β > δ. Choose γ ∈ P such that for all x ∈ X

B(B(x, β), α) ⊆ B(x, γ).

Since T is thin, there exists a bounded V ⊆ X such that for all x ∈ X\V |B(x, γ)∩T | 6 1.
Since Y is an unbounded subset of X, there exists y ∈ Y \ V . So, |B(y, γ) ∩ T | 6 1.

Suppose that z ∈ B(y, β) \ B(y, δ). Since z ∈ B(T, α), z ∈ B(t1, α) for some t1 ∈ T .
Then t1 ∈ B(z, α) ⊆ B(B(y, β), α) ⊆ B(y, γ). But y ∈ B(t2, α) for some t2 ∈ T and, since
|B(y, γ) ∩ T | 6 1, we have t1 = t2. Then z ∈ B(t1, α) = B(t2, α) ⊆ B(B(y, α), α) ⊆ B(y, δ)
which contradicts the choice of z. Hence, B(y, β) \ B(y, δ) = ∅ and Y has asymptotically
isolated δ-balls
(iii) ⇒ (i). We take a subset A ⊆ X such that the family {B(x, α) : x ∈ A} is maximal
disjoint. Since A is large, it suffices to show that A is thin. Otherwise, we can choose β > α
such that, for every bounded subset V , there exists x(V ) ∈ A\V satisfying |B(x, β)∩A| > 1.
Clearly, the subset Y = {x(V ) : V is a bounded subset of X} is unbounded and B(y, β) \
B(y, α) 6= ∅ for each y ∈ Y , so Y has no asymptotically isolated α-balls.

Given a ballean B = (X,P,B), we say that a subset Y ⊆ X is isolated if, for each α ∈ P ,
there exists a bounded subset V such that B(y, α) ⊆ Y for each y ∈ Y \ V . A ballean B
is metrizable if B is asymorphic to a ballean of some metric space. For the criterion of
metrizability (see [7, Theorem 2.1.1]).

Theorem 3. For an unbounded ballean B = (X,P,B), the following statements hold

(i) if there is an unbounded isolated thin subset Y ⊆ X then B has asymptotically isolated
0-balls;

(ii) if B is metrizable and has asymptotically isolated 0-balls then there exists an unbounded
isolated thin subset Y of X.
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Proof. (i) Evident.
(ii) Let (X, d) be an unbounded metric space with asymptotically isolated 0-balls. We choose
inductively an injective sequence (xn)n∈ω in X such that B(xn, n) = {xn} for each n ∈ ω.
Then {xn : n ∈ ω} is an unbounded isolated thin subset of X.

In the next section, we show that Theorem 3 (ii) fails to be true for non-metrizable
balleans.

2. Ballean-filter mix. Let B = (X,P,B) be a ballean, ϕ be a filter on X such that
∩ϕ = ∅. We define a ballean-filter mix Bϕ as a ball structure (X,P ×ϕ,Bϕ) where P ×ϕ =
{(α,Φ): α ∈ P,Φ ∈ ϕ} and, for all x ∈ X,α ∈ P,Φ ∈ ϕ,

Bϕ(x, (α,Φ)) =

{
{x} if x ∈ Φ,

B(x, α) ∩ (X \ Φ) if x ∈ X \ Φ.

To verify that Bϕ is a ballean, given α, α′ ∈ P , we take β ∈ P such that, for each x ∈ X,
B(B(x, α), α′) ⊆ B(x, β), and note that

Bϕ(Bϕ(x, (α,Φ)), (α′,Φ′)) ⊆ Bϕ(x, (β,Φ ∩ Φ′)),

B∗ϕ(α,Φ) =

{
{x} if x ∈ Φ,

B∗(x, α) ∩ (X \ Φ) if x ∈ X \ Φ,⋃
{B(x, (α,Φ)) : (α,Φ) ∈ P × ϕ)} = X.

The third condition holds because B is connected.
By the definition, Bϕ ≺ B and each subset Φ ∈ ϕ has asymptotically isolated 0-balls

in Bϕ.
Let B = (X,P,B) be a ballean, α ∈ P , Φα = {x ∈ X : B(x, α) = {x}}. Clearly, B has

asymptotically isolated 0-balls if and only if Φα 6= ∅ for each α ∈ P . If B is unbounded with
asymptotically isolated 0-balls then the family {Φα : α ∈ P} is a base of some filter ϕ0 on X
such that

⋂
ϕ = ∅.

An unbounded ballean B with the support X is called maximal ([8]) if each stronger
ballean B on X is bounded. By the Zorn Lemma, each unbounded ballean can be streng-
thened to some maximal ballean. Under the CH, there is a maximal group ballean ([8,
Example 4.3]), but it is unknown ([8, Question 4.4]) whether a maximal group ballean can
be constructed in ZFC with no additional assumptions.

Theorem 4. Let B = (X,P,B) be an unbounded ballean with asymptotically isolated balls.
Then the following statements hold

(i) B = Bϕ0 ;

(ii) B is thin if and only if B is a mix of a bounded ballean on X and ϕ0;

(iii) B is maximal if and only if ϕ0 is an ultrafilter and B is thin.

Proof. (i) It suffices to show that B ≺ Bϕ0 . Let α ∈ P . Take (α,Φα) ∈ P × ϕ0. If x ∈ Φα,
B(x, α) = Bϕ0(x, (α,Φα)) = {x}. If x ∈ X \ Φα, B(x, α) ⊆ X \ Φα, so for all x ∈ X,

B(x, α) ⊆ Bϕ0(x, (α,Φα)).

Then the identity mapping is a ≺-mapping, and B ≺ Bϕ0 . Hence, B = Bϕ0 .
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(ii) We take an arbitrary non-empty set P ′ and consider a bounded ballean B′ = (X,P ′, B′),
B′(x, α) = X for all x ∈ X, α ∈ P ′. Consider a mix of B′ and ϕ0. For β > α, we have

B′ϕ0
(x, (β,Φ)) =

{
{x} if x ∈ Φ,

X \ Φ if x ∈ X \ Φ.

Suppose that B is thin and show that Bϕ0 = B′ϕ0
. Clearly, Bϕ0 ≺ B′ϕ0

.
Let (β,Φ) ∈ P ′ × ϕ0. Then B′ϕ0

(x, (β,Φ)) ⊆ B′ϕ0
(x, (β,Φγ)) for some γ ∈ P such that

Φγ ⊆ Φ. Since B is thin, X \Φγ is bounded, so there exists δ ∈ P such that X \Φγ ⊆ B(x, δ)
for every x ∈ X.

If x ∈ Φγ, then B′ϕ0
(x, (β,Φγ)) = {x} = Bϕ0(x, (δ,Φγ)).

If x ∈ X \ Φγ, then B′ϕ0
(x, (β,Φγ)) = X \ Φγ = B(x, δ) ∩ (X \ Φγ) = Bϕ0(x, (δ,Φγ)).

Hence, for all (β,Φ) ∈ P ′ × ϕ0, there exists (δ,Φγ) ∈ P × ϕ0 such that, for all x ∈ X,

B′ϕ0
(x, (β,Φ)) ⊆ Bϕ0(x, (δ,Φγ)),

and B′ϕ0
≺ Bϕ0 . Then Bϕ0 = B′ϕ0

and, by (i), B = B′ϕ0
.

On the other hand, let B be a mix B′ and ϕ0. Then X \ Φ is bounded in B for each
Φ ∈ ϕ0, so B is thin.
(iii) Apply (ii) and [7, Example 10.1.2] with ϕ = ϕ0.

The following two examples concern Theorem 3 (ii). We construct two unbounded bal-
leans B1 and B2 with asymptotically isolated balls such that each thin subset in B1 is
bounded, B2 has unbounded thin subsets but has no unbounded isolated thin subsets.

Example 1. Let G be the group of all permutations of ω, B = B(G,ω,FG), where FG is
the ideal of all finite subsets of G. We take a filter ϕ on ω such that ∩ϕ = ∅ and for every
infinite subset Y of ω, there exists Φ ∈ ϕ such that Y \ Φ is infinite (each free ultrafilter
has this property), and put B1 = Bϕ. Clearly, B1 has asymptotically isolated 0-balls. Let
Y be an unbounded subset of B1. We take an infinite subset Z ⊂ Y such that X \ Z ∈ ϕ,
and choose a permutation g ∈ G such that g(Z) = Z and g has no fixed points on Z. Since
|Bϕ(z, ({g} × (X \ Z)))| = 2 and each bounded subset in B1 is finite, Z is not thin.

Example 2. Let X be a binary tree with the root x0 endowed with the path metric d,
B be the metric ballean (X,R+, Bd), Bd(x, r) = {y ∈ X : d(x, y) 6 r}. We take a filter ϕ on
X with the base

{X \ F : F is a finite union of infinite rays with the endpoint x0}.

We put B2 = Bϕ. Since B and B2 have the same set of bounded subsets and B is a metric
ballean, each unbounded subset of Bϕ has a thin subset. By the König lemma, each infinite
subset of X has an infinite intersection with some ray. It follows that B2 has no isolated thin
subsets.

We recall that a metric space (X, ρ) is uniformly locally finite if, for any n ∈ N, there
exists c(n) ∈ N such that |Bρ(x)| < c(n) for each x ∈ X.

By [2], an unbounded uniformly locally finite ultrametric space with no asymptotically
isolated balls is coarsely equivalent to the Cantor macro-cube 2<N = (

⊗
N Z2, d) where

d(x, y) = max{n ∈ N : xi = yi for every i > n}.
By [7, Theorem 3.1.4], every countable ultrametric space is asymorphic to some subspace

of the Baire space ω<ω = (
⊗

ω ω, d), d(x, y) = max{n : xi = yi for every i > n}.
In the first version of the paper we asked the following two questions.
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• Let (X, ρ) be an unbounded uniformly locally finite ultrametric space with asymptoti-
cally isolated 0-balls. Does there exist a filter ϕ on

⊗
ω Z2 with countable base such

that (X, ρ) is coarsely equivalent to the ballean-filter mix of 2<ω and ϕ? If not then
how to detect when this is so.
• Let (X, ρ) be a countable unbounded ultrametric space with asymptotically isolated

0-balls. Does there exists a filter ϕ on
⊗

ω ω with a countable base such that (X, ρ) is
coarsely equivalent to the ballean-filter mix of ω<ω and ϕ? If not then how to detect
when this is so?

Taras Banakh has answered both questions affirmatively. With his kind permission, we
rewrite corresponding arguments.

To answer the first question, take any unbouned uniformly locally finite ultrametric
space X having asymptotically isolated balls. By Theorem 3, X contains an isolated subset
Y ⊂ X whose complement Z = X \ Y is coarsely thin. By an Embedding Theorem 3.11 of
Dranishnikov and Zarichnyi ([3]), the space X admits a coarse embedding into the Cantor
macro-cube 2<N. So, we can assume that X is a subset of 2<N. Now consider the filter
ϕ = {F ⊂ 2<N : 2<N \ (F ∪Y ) is finite}, which is the Fréchet filter on the set 2<N \Y ⊃ Z. It
can be shown that the ballean-filter mix 2<N

ϕ is coarsely equivalent to X. A coarse equivalence
f : X → 2<N

ϕ can be defined letting f |Y = id and f |Z : Z → 2<N \ Y be any bijective map.
In a similar fashion we can give an answer to the second question.

3. Ballean-ideal mix. Let B = (X,P,B) be a ballean, I be an ideal on X such that
B(A,α) ∈ I for all A ∈ I, α ∈ P . We define a ballean-ideal mix BI as a ball structure
(X,P × I, BI) where P × I = {(α,A) : α ∈ P,A ∈ I} and, for each x ∈ X

BI(x, (α,A)) =

{
B(A,α) if x ∈ A,
B(x, α) if x ∈ X \ A.

To see that BI is a ballean, we take α, α′ ∈ I and choose β ∈ I such that B(B(x, α), α′) ⊆
B(x, β) for each x ∈ X. Then

BI(BI(x, (α,A)), (α′, A′)) ⊆ BI(x, (β,A ∪ A′)),

B∗I(x, (α,A)) =

{
B∗(A,α) if x ∈ A,
B∗(x, α) if x ∈ X \ A.

Clearly, BI � B. We note that this construction was introduced unexplicitly in [1] for the
case of some group balleans, so the following statement can be considered as a generalization
of Theorem 2.2 from [1].

Theorem 5. Let B be a ballean, S be the ideal of all small subsets of B. Then the ideal of
small subsets of BS coincides with S and each small subset of BS is bounded.

Proof. We use the following observation: a subset S of X is small if and only if X \B(S, α)
is large for every α ∈ P . Let S be a subset small in B. Take arbitrary radius (α,A) ∈ P ×S.
Then X \ BS(S, (α,A)) ⊇ X \ B(A ∪ S, α). Since A ∪ S is small in B, X \ BS(S, (α,A))
contains a subset large in B, and hence is large in BS . So, S is small in BS .

Assume that S is small in BS but not small in B. Take α ∈ P such that B(S, α) is thick
in B. Then B(S, α) \A is thick in B for each A ∈ S. By definition of balls in BS , B(S, α) is
thick in BS . Since B(S, α) = BS(S, (α,∅)), we conclude that S is not small in BS .
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Let S be a small subset in BS . Take any x ∈ S. Since S is also small in B, BS(x, (α, S)) =
B(S, α) ⊇ S, so S is bounded in BS .

Under the CH, there exists ([8, Example 4.2]) a group ideal I on a countable group of
period 2 such that each unbounded set in the group ballean (G, I) is large, so each small
subset of (G, I) is bounded. It is unknown ([8, Question 4.7]) if there is a ZFC-example of
a group ballean in which every small subset is bounded. We note that every thin subset of
a group ballean is small, and pose a weaker version of this question.

Question 1. In ZFC, does there exist an unbounded group ballean in which each thin subset
is bounded?

Let X be an infinite set, I be an ideal of X such that
⋃
I = X. We put ϕ = {X \A : A ∈

I} and denote by Xϕ the mix of the bounded ballean X on X and ϕ. Each small subset in
Xϕ is bounded and the ideal of bounded subsets coincides with I.

Question 2. Given an ideal I on an infinite group G, how to detect whether I is an ideal of
small subsets of some group ballean on G? In particular, if G is amenable, does there exist
a group ballean on G in which the ideal of small subsets coincides with the ideal of universal
null sets? A subset A ⊆ G is universal null if µ(A) = 0 for each Banach measure µ on G.

Question 3. Let G be a countable group, A be a subset of G small in each group ballean
on G. Is A finite?

To answer Question 3 affirmatively, it suffices to give a positive answer to the following
question.

Question 4. Let G be a countable group, L be an infinite subset of G. Does there exist a
group ballean on G in which L is large? For some groups (in particular, for Z), this is so.

4. Filter product. Let κ be an infinite cardinal, {Xα : α < κ} be a family of sets with the
distinguished elements eα ∈ Xα. The direct product X =

⊗
α<κ(Xα, eα) can be identified

with the set of all κ-sequences (xα)α<κ such that xα ∈ Xα and xα = eα for all but finitely
many α < κ. We fix a filter ϕ on κ such that

⋂
ϕ = ∅ and consider the ball structure

BX,ϕ = (X,ϕ,Bϕ) where

Bϕ(x,Φ) = {y ∈ X : yα = xα for all α ∈ κ \ Φ}.

It is easy to see that BX,ϕ is a ballean. If each Xα is a group with the identity eα then X
is a group and BX,ϕ is a group ballean determined by the group ideal with the base

{
⊗
α∈κ\Φ

(Xα, eα) : Φ ∈ ϕ}.

Given a ballean B = (X,P,B), we say that a sequence (xn)n∈ω in X is asymptotically
convergent if, for every bounded subset V of X, there exists m ∈ ω such that xn ∈ X \ V
for each n > m. If each unbounded subset of X has an asymptotically convergent sequence,
we say that B is Fréchet. Clearly, each metrizable ballean is Fréchet. Now we construct in
ZFC a countable group ballean which is Fréchet but non-metrizable.
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Example 3. A point s of a topological space S is called a Fréchet point if each subset
A ⊆ S \ {x} with s ∈ clA contains a sequence convergent to s. It is not hard (see [4,
Example 1.6.18]) to construct a countable topological space (S, τ) with a Fréchet point
of uncountable character, i.e. the filter of neighbourhoods of s has a countable base. We
identify S with ω ∪ {∞}, s with ∞, and put

ϕ = {U \ {∞} : U is a neighbourhood of ∞ in τ}.

Then we consider the filter product BX,ϕ whereX =
⊗

i<ω(Xi, ei),Xi is a group, |Xi| > 1.
Since ϕ has no countable base, by [7, Theorem 2.1.1], BX,ϕ is not metrizable. Let Y be
an unbounded subset of BX,ϕ. For each Φ ∈ ϕ, we take yΦ ∈ Y such that |supt yΦ ∩ Φ 6= ∅,
where supt y = {i ∈ ω : yi 6= ei}, choose f(yΦ) ∈ supt yΦ ∩ Φ and put Z = {f(yΦ) : Φ ∈ ϕ}.
Since ∞ ∈ clτ Z, there exists a sequence (zn)n∈ω in Z converging to ∞. For each n ∈ ω, we
take yn ∈ Y such that f(yn) = zn. Then the sequence (yn)n∈ω is asymptotically convergent.

We say that a ballean B = (X,P,B) is thin Fréchet if each unbounded subset Y of X
contains an asymptotically convergent sequence (yn)n∈ω such that the subset {yn : n ∈ ω} is
thin. Again, each metrizable ballean is thin Fréchet. The ballean B from Example 1 is Fréchet
but not thin Fréchet. The group ballean BX,ϕ from Example 3 is thin Fréchet. Indeed, passing
to subsequences, we may suppose that zn+1 /∈

⋃n
i=0 supt yi for each n ∈ ω. Then the subset

{yn : n ∈ ω} is thin.

Question 5. Is every Fréchet group ballean thin Fréchet?

Let B1, B2 be balleans with common support X such that B1 ≺ B2. Clearly, every large
subset of B1 is large in B2. However, in this case the ideals S1,S2 of small subsets of B1,B2

could be non-incident: S1 \ S2 6= ∅ and S2 \ S1 6= ∅.

Example 4. Let X be a direct product
⊗

i<ωXi of countable groups. We denote by B1 the
group ballean (X,FX). Then we put Gn =

⊗
i6nXn, denote by I the group ideal with the

base {Gn : n ∈ ω} and put B2 = (X, I). To show that S1 \ S2 6= ∅, we note that
⊗

0<i<ωXi

is small in B1 but large in B2. To show that S2 \S1 6= ∅, we enumerate {Kn : n ∈ ω} all finite
subsets of X and choose inductively a sequence (xn)n∈ω in X such that, for each n ∈ ω,

Gn+1(K0x0 ∪ . . . ∪Knxn) ∩Gn+1Kn+1xn+1 = ∅.
We put A =

⋃
n∈ωKnxn. By the construction, A is thick in B1 so A /∈ S1. On the other

hand, Gn+1g * GnA for all g ∈ G, n ∈ ω. It follows that GnA is not thick in B2 so A ∈ S2.

The following example was suggested by Sergiy Slobodianiuk.

Example 5. We construct two balleans B1,B2 with common support X such that B1 ≺ B2

but the families T1 and T2 of thin subsets of B1 and B2 are not incident. Let X be a direct
product X =

⊗
i∈ωXi of countable groups with the identities ei. We consider the group

ideals I1 and I2 on X with the bases

{F ×X1 × . . .×Xn : F ∈ FX0 , n ∈ ω}, {X1 × . . .×Xn : n ∈ ω},

put B1 = (X, I1), B2 = (X, I2) and note that B1 ≺ B2. Clearly, X0 /∈ T1 but X0 is bounded
in B2 so X0 ∈ T2 \ T1. Then we take an infinite thin subset T in the ballean (X,FX0),
enumerate T = {gm : m ∈ ω}, pick xn ∈ Xn \ {en} and put A = {gmxn : 1 < n 6 m}. It is
easy to see that A ∈ T1 \ T2.
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