Reference |
1. Vladimirov V.S. Equations of mathematical physics. – Moscow: Fizmatlit, 2000. – 398p. (in Russian)
2. Galazyuk V.A., Lyudkevych J.V., Muzychuk A.O. An integral equation method for time-depended
diffraction problems. Lviv. univ., 1984. – Dep. v UkrNIINTI, .601Uk-85Dep. – 16p. (in Russian)
3. Galazyuk V.A., Chapko R.S. Methods of the Tschebyschov–Laguerre transformation and integral equations
for initial boundary value problems for the telegraph equation// Dokl. AN USSR. – 1990. – Ser.A,
V.8. – P. 11–14. (in Russian)
4. Ladyzhenskaya O.A. The boundary value problems of mathematical physics. – Moscow: Nauka, 1973. –
407p. (in Russian)
5. Litynskyy S., Muzychuk Yu., Muzychuk A. On week solutions of boundary value problems for an infinite
system of elliptic equations// Visn. Lviv. univ. Ser. prykl. matem. inform. – 2009. – V.15. – P. 52–70.
(in Ukrainian)
6. Lyudkevych J.V., Muzychuk A.O. Numerical solution of boundary value problems for a wave equation.–
Lviv: Lviv. university, 1990. – 90p. (in Russian)
7. Lyudkevych J.V., Skaskiv R.B. Numerical solution of the Dirichlet boundary value problem for a heat
equation by integral transformations and integral equations methods in the case of open axial-symmetric
surfaces// Visn. Lviv. univ. Ser. mekh.-mat. – 1989. – V.31. – P. 2–8. (in Ukrainian)
8. Mikhlin S.G. Linear equations in partial derivatives. – Moscow: Vysshaya shkola, 1977. – 432p. (in
Russian)
9. Chapko R. On the combination of some semi-discretization methods and boundary integral equations for
the numerical solution of initial boundary value problems// PAMM, Proc. Appl. Math. Mech. – 2002. –
V.1. – P. 424–425.
10. Chapko R., Kress R. Rothe’s method for the heat equation and boundary integral equations// Journal of
Integral Equations and Applications. – 1997. – V.9. – P. 47–69.
11. Chapko R., Kress R. On the numerical solution of initial boundary value problems by the Laguerre
transformation and boundary integral equations// In Agarwal, O’Regan, eds. Integral and Integrodifferential
Equations: Theory, Methods and Applications. Series in Mathematical Analysis and Applications.
– V.2, Cordon and Breach Science Publishers, Amsterdam, 2000. – P. 55–69.
12. Nostabel M. Boundary integral operators on Lipschitz domains: elementary results// SIAM J. Math.
Anal. – 1988. – V.19. – P. 613–626.
13. Hsiao G.C., Wendland W.L. Boundary Integral Equations. – Springer-Verlag, Berlin, 2008. – 640p.
14. McLean W. Strongly Elliptic Systems and Boundary Integral Equations. – Cambridge University Press,
2000. – 357p.
15. Steinbach O. Numerical Approximation Methods for Elliptic Boundary Value Problems. – Springer
Science, 2008. – 396p.
16. Sybil Yu. Three-dimensional elliptic boundary value problems for an open Lipschitz surface// Mat. Stud.
– 1997. – V.8, №1. – P. 79–96.
|