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We consider boundary value problems for infinite triangular systems of elliptic equations
with variable coefficients in 3d Lipschitz domains. Variational formulations of Dirichlet, Neu-
mann and Robin problems are received and their well posedness in corresponding Sobolev
spaces is established. With the help of introduced q-convolution the integral representations
of generalized solutions of formulated problems in the case of constant coefficients are built.
We investigate the properties of integral operators and well posedness of received systems of
boundary integral equations.

Ю. А. Музычук, Р. С. Хапко. О вариационных формулировках внутренних граничных
задач для бесконечных систем эллиптических уравнений специального вида // Мат. Сту-
дiї. – 2012. – Т.38, №1. – C.12–34.

В трехмерных ограниченных областях с липшицевой границей рассматриваются гра-
ничные задачи для бесконечных систем эллиптических уравнений специального треуголь-
ного вида с переменными коэффициентами. Сформулированы вариационные постановки
задач Дирихле, Неймана и Робина и установлено их корректность в соответствующих
пространствах Соболева. С помощью введенного понятия q-свертки для поставленных
задач в случае постоянных коэффициентов построены интегральные представления реше-
ний. Исследованы свойства интегральных операторов и корректность полученных систем
граничных интегральных уравнений.

1. Introduction. The variational approach is being widely used for the investigation of the
well-posedness of boundary value problems for elliptic equations and for their subsequent
solution. Since it provides the ability to transfer the ellipticity property of differential
operators on the corresponding boundary integral operators, it has been proved to be very
effective when reducing boundary value problems for elliptic equations with constant coeffi-
cients to boundary integral equations. This allows to use suitable Green formulae and the
integral representation of the solution through its trace and the co-normal derivative on the
boundary. Substantial results on the variational approach in the context of the reduction of
boundary value problems for elliptic equations and their finite systems to boundary integral
equations are given in [13–16].

Various semi-discretization approaches for time-dependent boundary value problems
often lead to necessity of investigation and numerical solution of boundary value problems
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for infinite elliptic systems ([2, 3, 6, 7, 9–11]). Variational formulations of the Dirichlet and
Neumann boundary value problems for an infinite triangular system of elliptic equations
with constant coefficients have been studied in [5]. Our goal is to generalize these results
for the case of a triangular system with variable coefficients and to investigate the Robin
problem besides the Dirichlet and Neumann boundary value problems.

The paper is organized as follows. In the first chapter we define the Sobolev spaces
necessary for our research and provide information about the objects we are dealing with. In
the second chapter we introduce variational formulations of boundary value problems for the
infinite triangular system of elliptic equations with measurable and bounded coefficients and
establish their well-posedness. In chapter 3 we provide equivalent variational formulations of
boundary value problems that lead to an effective integral model. For this purpose we use
a special operation of q-convolution ([5]) and derive the analogues of the Green formulae.
Then in chapter 4 we assume that the coefficients of elliptic equations are constant. It
allows us to build the integral representation of the solution of boundary value problems
based on the fundamental solution of the system of differential equations and to investigate
the properties of corresponding boundary integral operators. Finally, in the fifth chapter
boundary integral equations equivalent to the boundary value problems are obtained and we
show the well-posedness of these problems.

Thus we start with definitions of necessary functional spaces and the elliptic operator.
Let Ω ⊂ R3 be a bounded and simply connected domain with Lipschitz boundary Γ and
ν̄(x) = (ν1(x), ν2(x), ν3(x)) in a unit normal to Γ at the point x. D(Ω) and D′(Ω) are the
spaces of all test functions and distributions on them correspondingly ([15]). We will use
the Lebesgue space L2(Ω) and the Sobolev spaces H1(Ω) and H1

0 (Ω) of real-valued scalar
functions and duals to them H̃−1(Ω):= (H1(Ω))

′
and H−1(Ω):= (H1

0 (Ω))
′
correspondingly

([13]). We will have in mind that

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω):=

(
H1

0 (Ω)
)′
, (1)

H1(Ω) ⊂ L2(Ω) ⊂ H̃−1(Ω). (2)

It is known ([13]), that the space H̃−1(Ω) can be given in the form of a direct sum

H̃−1(Ω) = H̃−1
0 (Ω)⊕ H̃−1

Γ (Ω), (3)

where the subspace H̃−1
Γ (Ω):={f ∈ H̃−1(Ω)|〈f, v〉H1(Ω) = 0 ∀v ∈ H1

0 (Ω)} consists of functi-
onals with support only on Γ and H̃−1

0 (Ω):=(H̃−1
Γ (Ω))⊥. Note that H̃−1

0 (Ω) can be identified
with a subspace of H−1(Ω). Hereinafter forms 〈·, ·〉H1(Ω) and 〈·, ·〉H1

0 (Ω) denote duality pairings
on spaces H1(Ω) and H̃−1(Ω) and on H1

0 (Ω) and H−1(Ω) respectively. (·, ·)L2(Ω) is the inner
product in L2(Ω).

Let ai,j (i, j ∈ {1, 2, 3}) and a0 be measurable and bounded functions that satisfy the
conditions

ai,j(x) = aj,i(x) (i, j ∈ {1, 2, 3}) for almost all x ∈ Ω, (4)
3∑

i,j=1

ai,j(x)ξiξj ≥ α

3∑
i=1

ξ2
i for arbitrary ξ1, ξ2, ξ3 ∈ R and almost all x ∈ Ω, (5)

where α is some positive constant and

a0(x) > 0 for almost all x ∈ Ω. (6)
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Consider the formal second order differential operator

(Pu)(x):=−
3∑

i,j=1

∂

∂xj

[
ai,j(x)

∂u(x)

∂xi

]
+ a0(x)u(x), x ∈ Ω, (7)

and the bilinear form associated with it

aΩ(u, v):=

∫
Ω

[ 3∑
i,j=1

ai,j(x)
∂u(x)

∂xi

∂v(x)

∂xj
+ a0(x)u(x)v(x)

]
dx, u, v ∈ H1(Ω).

Here the derivatives are interpreted in sense of D′(Ω).
Let us introduce the space H1(Ω, P ):={u ∈ H1(Ω)|Pu ∈ H̃−1

0 (Ω)}. Let γ0 : H1(Ω) →
H1/2(Γ) be a trace operator and γ1 : H1(Ω, P )→

(
H1/2(Γ)

)′
=:H−1/2(Γ) — a co-normal deri-

vative operator ([12]) that in case of functions from H2(Ω), a sufficiently smooth boundary Γ
and continuous on Ω̄ coefficients ai,j(∈ {1, 2, 3}) coincides with the co-normal derivative

∂ν̄u(x):=
3∑

i,j=1

ai,j(x)
∂u(x)

∂xi
νj(x), x ∈ Γ.

It is known ([12]) that for functions u ∈ H1(Ω) and v ∈ H1
0 (Ω) the following equality

holds
〈Pu, v〉H1

0 (Ω) = aΩ(u, v), (8)

and for u ∈ H1(Ω, P ) and v ∈ H1(Ω) — the equality

〈Pu, v〉H1(Ω) = aΩ(u, v)− 〈γ1u, γ0v〉Γ. (9)

Equality (9) is also called the first Green formula.

2. Variational formulations of boundary value problems. We consider an infinite
system of elliptic equations for the unknown functions u0, u1, ..., uk, ... on Ω

Pu0 = f0,

c1,0u0 + Pu1 = f1,

c2,0u0 + c2,1u1 + Pu2 = f2,

. . . . . . . . . . .

ck,0u0 + ck,1u1 + ...+ ck,k−1uk−1 + Puk = fk,

. . . . . . . . . . . . .

(10)

where ci,j(i, j ∈ N0,N0:=N ∪ {0}) are some given measurable and bounded on Ω functions
with ci,j = 0 when j ≥ i and fi(i ∈ N0) are given functions (functionals) on Ω.

We investigate boundary value problems for system (10) that consists in finding the
solutions of (10) which satisfy one of the following boundary value conditions

• Dirichlet condition:
uk|Γ = h̃k, k ∈ N0, (11)

• Neumann condition:
∂ν̄uk|Γ = g̃k, k ∈ N0, (12)

• Robin condition:

(∂ν̄uk + bk,0u0 + bk,1u1 + ...+ bk,k−1uk−1 + bk,kuk)|Γ = g̃k, k ∈ N0, (13)
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where h̃i, g̃i (i ∈ N0) are given functions (functionals) on Γ, bi,j ∈ L∞(Γ) (i, j ∈ N0) — given
functions on Γ with bi,j = 0 when j > i ≥ 0, bi,i ≥ b̃i > 0, b̃i — given constants. In other
words, we will consider the Dirichlet problem (10), (11), the Neumann problem (10), (12)
and the Robin problem (10), (13).

We build variational formulations for each of the formulated boundary value problems. At
first we conduct some auxiliary observations. Let u0, u1, ... be an infinite system of functions
from H1(Ω). Then we denote

Gk(u0, u1, ...):=ck,0u0 + ck,1u1 + ...+ ck,k−1uk−1 + Puk, k ∈ N0. (14)

It is obvious that Gk(u0, u1, ...) ∈ H−1(Ω), k ∈ N0. Considering for each k ∈ N0 the action of
such functional Gk(u0, u1, ...) on an arbitrary function vk ∈ H1

0 (Ω) and using the relation (8),
we arrive at such system of the variational equalities

〈G0(u0, u1, ...), v0〉H1
0 (Ω) = aΩ(u0, v0),

〈G1(u0, u1, ...), v1〉H1
0 (Ω) = (c1,0u0, v1)L2(Ω) + aΩ(u1, v1),

. . . . . . .

〈Gk(u0, u1, ...), vk〉H1
0 (Ω) =

∑k−1
i=0 (ck,iui, vk)L2(Ω) + aΩ(uk, vk),

. . . . . . . . . . .

(15)

Similarly if functions u0, u1, ... are elements of the space H1(Ω, P ) then taking into account
that Gk(u0, u1, ...) ∈ H̃−1

0 (Ω) for each k ∈ N0 and using the first Green formula (9), we
obtain the following relations

〈G0(u0, u1, ...), v0〉H1(Ω) = aΩ(u0, v0)− 〈γ1u0, γ0v0〉Γ,
〈G1(u0, u1, ...), v1〉H1(Ω) = (c1,0u0, v1)L2(Ω) + aΩ(u1, v1)− 〈γ1u1, γ0v1〉Γ,
. . . . . . .

〈Gk(u0, u1, ...), vk〉H1(Ω) =
∑k−1

i=0 (ck,iui, vk)L2(Ω) + aΩ(uk, vk)− 〈γ1uk, γ0vk〉Γ,
. . . . . . . . . . .

(16)

for an arbitrary infinite system of functions v0, v1, ... ∈ H1(Ω).
Relations (15) and (16) for system (10) are analogues to relations (8) and (9) correspon-

dingly. Based on the equalities (15) and (16) we can analogously to elliptic equations
introduce definitions of generalized solutions of boundary value problems for system (10).

Definition 1. Let f0, f1, ... be a set of elements of H−1(Ω) and h̃0, h̃1, ... — elements of
H1/2(Γ). The sequence of functions u0, u1, ... from H1(Ω) is called a generalized solution of
the Dirichlet problem (10), (11) if it satisfies the (infinite) system of equalities

aΩ(u0, v0) = 〈f0, v0〉H1
0 (Ω),

(c1,0u0, v1)L2(Ω) + aΩ(u1, v1) = 〈f1, v1〉H1
0 (Ω),

. . . . . . .∑k−1
i=0 (ck,iui, vk)L2(Ω) + aΩ(uk, vk) = 〈fk, vk〉H1

0 (Ω),

. . . . . . . . . . .

(17)

for an arbitrary (infinite) set of functions v0, v1, ... ∈ H1
0 (Ω) and boundary conditions

γ0uk = h̃k, k ∈ N0. (18)
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Definition 2. Let f0, f1, ... be a sequence of elements of H̃−1
0 (Ω) and g̃0, g̃1, ... — of H−1/2(Γ).

A sequence of functions u0, u1, ... з H1(Ω) is called a generalized solution of the Neumann
problem (10), (12) if it satisfies the (infinite) system of equalities

aΩ(u0, v0) = 〈f0, v0〉H1(Ω) + 〈g̃0, γ0v0〉Γ,
aΩ(u1, v1) + (c1,0u0, v1)L2(Ω) = 〈f1, v1〉H1(Ω) + 〈g̃1, γ0v1〉Γ,
. . . . . . .

aΩ(uk, vk) +
∑k−1

i=0 (ck,iui, vk)L2(Ω) = 〈fk, vk〉H1(Ω) + 〈g̃k, γ0vk〉Γ,
. . . . . . . . . . .

(19)

for an arbitrary (infinite) sequence of functions v0, v1, ... ∈ H1(Ω).

Definition 3. Let f0, f1, ... be a sequence of elements of H̃−1
0 (Ω) and g̃0, g̃1, ... — elements

of H−1/2(Γ). The sequence of functions u0, u1, ... from H1(Ω) is called a generalized solution
of the Robin problem (10), (13) if it satisfies the (infinite) system of equalities

aΩ(u0, v0) + 〈bk,0γ0u0, γ0v0〉Γ = 〈f0, v0〉H1(Ω) + 〈g̃0, γ0v0〉Γ,
aΩ(u1, v1) + (c1,0u0, v1)L2(Ω) +

∑1
i=0〈bk,iγ0ui, γ0v1〉Γ = 〈f1, v1〉H1(Ω) + 〈g̃1, γ0v1〉Γ,

. . . . . . .

aΩ(uk, vk) +
∑k−1

i=0 (ck,iui, vk)L2(Ω) +
∑k

i=0〈bk,iγ0ui, γ0vk〉Γ = 〈fk, vk〉H1(Ω) + 〈g̃k, γ0vk〉Γ,
. . . . . . . . . . .

(20)
for an arbitrary (infinite) sequence of functions v0, v1, ... ∈ H1(Ω).

Concerning the well-posedness of the specified problems the following results have been
obtained.

Theorem 1. The Dirichlet boundary value problem (10), (11) has a unique generalized
solution.

Proof. The triangular manner of the system (17) gives us an opportunity to consider equa-
tions of the system one by one and apply the same procedure on each step of the proof.

We start with the Dirichlet boundary value problem for the first equation aΩ(u0, v) =
〈f0, v〉H1

0 (Ω) for each v ∈ H1
0 (Ω). Since each function h̃k ∈ H1/2(Γ) due to the trace theo-

rem ([12]) can be extended in Ω with some (non-unique) element ũk ∈ H1(Ω), we can obtain
the following variational equation for the difference u0 − ũ0=:w ∈ H1

0 (Ω)

aΩ(w, v) = 〈f̃0, v〉H1
0 (Ω):=〈f0, v〉H1

0 (Ω) − aΩ(ũ0, v) for each v ∈ H1
0 (Ω). (21)

Due to the H1(Ω)-ellipticity of the bilinear form and the boundedness of the functional f̃0 on
H1

0 (Ω) according to the Lax-Milgram theorem this equation has a unique solution in H1
0 (Ω).

This proves the existence of the unique function u0 ∈ H1(Ω) that is a generalized solution
of the first problem.

When considering the second problem we move the function u0 into the right hand side
of the corresponding equation and for the difference u1 − ũ1=:w ∈ H1

0 (Ω) we arrive at the
variational equation that differs from (21) only in the right hand side. That is why using the
previous considerations we prove the assertion of the theorem for the solution u1. Obviously,
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acting this way on each succeeding step we will obtain the variational equation (21) with
the following right hand side

〈f̃k, v〉H1
0 (Ω):=〈fk, v〉H1

0 (Ω) −
∑k−1

i=0
(ck,iũi, v)L2(Ω) − aΩ(ũk, v) for each v ∈ H1

0 (Ω), k ∈ N.

Here ui (i ∈ {0, 1, . . . , k − 1}) are generalized solutions of the problems considered on the
previous steps. Since f̃k ∈ H−1(Ω), for each boundary value problem with an arbitrary index
k ∈ N the generalized solution uk ∈ H1(Ω) exists and is unique.

Theorem 2. The Robin boundary value problem (10), (13) has a unique generalized solu-
tion.

Proof. Consider the first equation of system (20)

aΩ(u0, v) + bΓ,0(u0, v) = 〈f0, v〉H1(Ω) + 〈g̃0, γ0v〉Γ for each v ∈ H1(Ω). (22)

Here the bilinear form bΓ,k(·, ·) (k ∈ N0) is expressed through traces of elements of
space H1(Ω) on the boundary Γ

bΓ,k(u, v) =

∫
Γ

bk,k(x)γ0u(x)γ0v(x)dSx, u, v ∈ H1(Ω).

As long as bk,k ∈ L∞(Γ) and γ0u, γ0v ∈ H1/2(Γ) ⊂ L2(Γ), such integral exists. The expressi-
on aΩ(u, v) + bΓ,0(u, v)=:ãΩ(u, v) can be treated as some bilinear form for u, v ∈ H1(Ω).
Obviously, it is coercive. On the other hand, according to (3) the functionals f0 ∈ H̃−1

0 (Ω)

and g̃0 ∈ H−1/2(Γ) ⊂ H̃−1
Γ (Ω) give in addition some element of the space H̃−1(Ω). Then,

taking into account the Lax-Milgram theorem there exists a unique solution u0 ∈ H1(Ω) of
the equation (22).

Next we follow the scheme, used in the proof of the previous theorem. Consider the
equation with an arbitrary index k ∈ N. After shifting all expressions in it that contain
functions ui (i ∈ {0, 1, . . . , k − 1}) into the right hand side, this equation takes the form

aΩ(uk, v) + bΓ,k(uk, v) = 〈f̃k, v〉H1(Ω) for each v ∈ H1(Ω), k ∈ N, (23)

where

〈f̃k, v〉H1(Ω):=〈fk, v〉H1(Ω) −
k−1∑
i=0

(ck,iui, v)L2(Ω) +
k−1∑
i=0

〈bk,iγ0ui, γ0v〉Γ + 〈g̃k, γ0v〉Γ.

Obviously, f̃k ∈ H̃−1(Ω). Since the obtained variational equation differs from (22) in only the
right hand side, we arrive at the conclusion that there exists its unique solution uk ∈ H1(Ω).

Thus, we have shown the existence and the uniqueness of any component of the variational
solution of system (20).

Note that coerciveness of the bilinear form ãΩ(u, v) in the previous proof also persists
when bi,j = 0 (i, j ∈ N0). In this case the Robin boundary value problem is transformed into
the Neuman boundary value problem.

Numerical solutions of the considered problems can be found by Galerkin methods. As
it could be seen from the proofs of the above theorems, the structure of the system allows
consequent solution of the corresponding variational equations. Herewith the k-th component
of the generalized solution u0, u1, ..., uk, ... found on the k-th step is transferred into the right
hand side of the k + 1-th variational equation as a given function and the operator of the
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left side of the numerical scheme will remain the same for all components. This condition is
crucial for an effective implementation of the numerical method.

In the case of constant coefficients of system (10) variational relations (16) can be used to
build an integral representation of the solution of boundary value problems through simple-
and double-layer potentials. It will allow us to apply boundary integral equations method
for the numerical solution ( [13–15]). However, consequent transferring of the components of
the generalized solution found on the previous steps into the right hand side of the current
equation will lead to necessity to recalculate the volume potential over the whole domain Ω
on each step. Therefore we introduce other variational formulations, equivalent to the given
above, but without such a flaw.

3. Variational formulations with usage of q-convolution. To make notations of the
specified generalized solutions more convenient we give some new definitions.

Let X be an arbitrary linear space over the field of real numbers, Z — a set of integers. By
X∞ we denote the linear space of reflections u : Z→ X having u(k) = 0 when k < 0. For any
element u ∈ X∞ we have uk ≡ (u)k:=u(k), k ∈ Z, and will write it as u:=(u0, u1, ..., uk, ...)

>.
Henceforth we will call elements of X∞ sequences.

Let us introduce triangular matrix operators C : (L2(Ω))∞ → (L2(Ω))∞ and B : (L2(Γ))∞

→ (L2(Γ))∞, that act in the following way

(Cu)k =
k∑
l=0

ck,l(u)l, k ∈ N0, (24)

(Bu)k =
k∑
l=0

bk,l(u)l, k ∈ N0, (25)

where ck,l and bk,l are coefficients of system (10) and Robin boundary condition corre-
spondingly. Let’s denote a sequence of bilinear forms by

aΩ(u,v):=(aΩ(u0, v0), aΩ(u1, v1), ...)>,u,v ∈ (H1(Ω))∞.

Under notations (u,v)X and 〈u,v〉X we will understand sequences ((u0, v0)X, (u1, v1)X, ...)
>

and (〈u0, v0〉X, 〈u1, v1〉X, ...)> correspondingly. Analogously, the corresponding linear functi-
onals will be treated as component-wise. For a sequence u ∈ (H1(Ω))∞ we introduce the
definition of a trace as a sequence of traces of its components i.e. γ0u:=(γ0u0, γ0u1, ...)

>

will be called a trace of sequence u on the boundary Γ. In the same manner, sequence
γ1u:=(γ1u0, γ1u1, ...)

> will be called a co-normal derivative of sequence u on the boundary
Γ.

Taking into account previous definitions, generalized solutions of the Dirichlet, Neumann
and Robin boundary value problems for system (10) can be defined in the following way.

• Let f ∈ (H−1(Ω))∞ and h̃ ∈ (H1/2(Γ))∞. Sequence u ∈ (H1(Ω))∞ is called a generalized
solution of the Dirichlet problem (10), (11) if it satisfies the variational equality

aΩ(u,v) + (Cu,v)L2(Ω) = 〈f,v〉H1
0 (Ω) for each v ∈ (H1

0 (Ω))∞ (26)

and the boundary condition
γ0u = h̃ on Γ. (27)
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• Let f ∈ (H̃−1
0 (Ω))∞ and g̃ ∈ (H−1/2(Γ))∞. A sequence u ∈ (H1(Ω))∞ is called

a generalized solution of the Neumann problem (10), (12) if it satisfies the variati-
onal equality

aΩ(u,v) + (Cu,v)L2(Ω) = 〈f,v〉H1(Ω) + 〈g̃, γ0v〉H1/2(Γ) for each v ∈ (H1(Ω))∞. (28)

• Let f ∈ (H̃−1
0 (Ω))∞ and g̃ ∈ (H−1/2(Γ))∞. A sequence u ∈ (H1(Ω))∞ is called a

generalized solution of the Robin problem (10), (13) if it satisfies the variational equality

aΩ(u,v) + (Cu,v)L2(Ω) + 〈Bγ0u, γ0v〉H1/2(Γ) =

= 〈f,v〉H1(Ω) + 〈g̃, γ0v〉H1/2(Γ) for each v ∈ (H1(Ω))∞. (29)

Consider the variational equation (26) for a sequence u ∈ (H1(Ω))∞. Bearing in mind
(15), we can rewrite it in the following way

〈Pu,v〉H1
0 (Ω) + (Cu,v)L2(Ω) = 〈f,v〉H1

0 (Ω) for each v ∈ (H1
0 (Ω))∞, (30)

where the matrix operator P : (H1
0 (Ω))∞ → (H−1(Ω))∞ acts by the rule (Pu)k = Puk,

k ∈ N0. Taking into account the embedding of spaces (1), the equality (30) can be presented
as follows 〈Pu,v〉H1

0 (Ω) + 〈Cu,v〉H1
0 (Ω) = 〈f,v〉H1

0 (Ω) for each v ∈ (H1
0 (Ω))∞. Introducing

the notation
G:=P + C, (31)

the previous equality can be given in the form of an operator equation

Gu = f in (H−1(Ω))∞. (32)

Thus, the generalized solution of the Dirichlet problem (10), (11) is the solution of the
operator equation (32) and satisfies the boundary condition (27), and vice versa, the solution
of (32), (27) is a generalized solution of the Dirichlet problem (10), (11).

Now we show that the generalized solution u ∈ (H1(Ω, P ))∞ of the Robin problem (10),
(13) will also satisfy a similar to (32) operator equation and the Robin boundary condition.
After application of the Green formula analogue (16) to the variational equality (29) we get

〈Pu,v〉H1(Ω) + 〈γ1u, γ0v〉H1/2(Γ) + 〈Cu,v〉H1(Ω)+

+〈Bγ0u, γ0v〉H1/2(Γ) = 〈f,v〉H1(Ω) + 〈g̃, γ0v〉H1/2(Γ), (33)

or

〈Gu− f,v〉H1(Ω) + 〈Bγ0u + γ1u− g̃, γ0v〉H1/2(Γ) = 0 for each v ∈ (H1(Ω))∞. (34)

Since u ∈ (H1(Ω, P ))∞ and f ∈ (H̃−1
0 (Ω))∞, as a result we get Gu − f ∈ (H̃−1

0 (Ω))∞.
Moreover, if we take in (34) an arbitrary element v ∈ (H1

0 (Ω))∞ then we come to the equality
〈Gu−f,v〉H1

0 (Ω) = 0, that means that the elementGu−f belongs to space (H̃−1
Γ (Ω))∞ as well.

Hence, due to the decomposition (3) Gu− f coincides with zero element of space (H̃−1(Ω))∞

i.e. the following operator equation

Gu− f = 0 in (H̃−1(Ω))∞ (35)
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or
Gu = f in (H̃−1(Ω))∞ (36)

is well defined.
Therefore, substituting an arbitrary sequence v ∈ (H1(Ω))∞ into (34), we arrive at the

relation 〈Bγ0u + γ1u − g̃, γ0v〉Γ = 0, that taking into account that values of the trace
operator γ0 : H1(Ω) → H1/2(Γ) fill in the whole space H1/2(Γ), is a variational formulation
of the Robin boundary condition

γ1u + Bγ0u = g̃in (H−1/2(Γ))∞. (37)

Thus, we have shown that the generalized solution of the Robin boundary value problem can
be characterized by the operator equation (36) and the boundary condition (37). Analogously
it can be shown that the generalized solution of the Neumann problem can be characterized
by the same operator equation (36) and the Neumann boundary condition

γ1u = g̃ in (H−1/2(Γ))∞. (38)

Boundary conditions (37) and (38), as in the theory of elliptic equations, will be referred
to as the natural boundary conditions.

We introduce according to [5] the operation of the q-convolution of sequences, that would
give us ability to write down equivalent variational formulations of the problems specified
above.

Let X, Y and Z be arbitrary linear spaces and q : X×Y→ Z — some reflection.

Definition 4. By q-convolution of sequences u ∈ X∞ and v ∈ Y∞ we will understand
a sequence w ∈ Z∞, that is defined according to the following rule

w = u ◦
q
v, (39)

where wn ≡ (u ◦
q
v)n ≡ u

n◦
q
v:=

∑n
i=0 q (un−i, vi), when n ≥ 0, and wn = 0 when n < 0.

The most important properties of q-convolutions and their examples are given in [5]. We
will simplify the notation of the convolution for some reflections. For example, in case of
q(u, v):=〈u, v〉H1

0 (Ω) we will write u ◦
H−1(Ω)

v:=u ◦
q
v.

We give a definition of a generalized solution of the Dirichlet problem (10), (11) by
means of q-convolution. Consider a sequence u ∈ (H1(Ω))

∞, that satisfies equation (32). Let
us substitute it into this equation and, treating the obtained equality as equality of elements
from (H−1(Ω))∞ and taking q(w, v) = 〈w, v〉H1

0 (Ω), v ∈ H1
0 (Ω), w ∈ H−1(Ω), we apply the

q-convolution with an arbitrary sequence v ∈ (H1
0 (Ω))

∞ to both sides of this equality. Taking
into account lemma 3.1 ([5]), we arrive at the following variational equation

(Gu) ◦
H−1(Ω)

v = f ◦
H−1(Ω)

v for each v ∈
(
H1

0 (Ω)
)∞

. (40)

Thus, the generalized solution of the Dirichlet problem (10), (11) can be characterized by
the variational equality (40) and the boundary condition (27).

Now we assume that sequence u ∈ (H1(Ω, P ))
∞ satisfies operator equation (36). We

apply the q-convolution with some arbitrary sequence v ∈ (H1(Ω))
∞ to both of its sides as



VARIATIONAL PROBLEMS FOR INFINITE ELLIPTIC SYSTEMS 21

elements of (H̃−1(Ω))∞, taking q(w, v) = 〈w, v〉H1(Ω), v ∈ H1(Ω), w ∈ H̃−1(Ω). As a result
we get

(Gu) ◦
H̃−1(Ω)

v = f ◦
H̃−1(Ω)

v for each v ∈
(
H1(Ω)

)∞
. (41)

Thus, the generalized solution of the Robin boundary value problem can be characterized
by variational equality (41) and the boundary condition (37). Obviously, this property also
holds for the generalized solution of the Neumann boundary value problem.

Let us obtain an analogue of the first Green formula using the q-convolution of sequences.
At first note that the component of the q-convolution in the left hand side of (41) with
an arbitrary index k ∈ N0 after application of the first Green formula (9) can be written as

(Gu)
k◦

H̃−1(Ω)
v =

k∑
i=0

aΩ (ui, vk−i)−
k∑
i=0

〈γ1ui, γ0vk−i〉Γ +
k∑
i=1

(
i−1∑
j=0

ci,juj, vk−i

)
L2(Ω)

. (42)

Henceforth we assume that the sum expressions equal zero if their last index is less than the
first one i.e. in the case of k = 0 the last item in the previous formula is absent.

Consider a sequence (Φ0(u,v),Φ1(u,v), ...,Φk(u,v), ...)>, components of which are the
following expressions

Φ0(u,v):=aΩ (u0, v0) , (43)

Φk(u,v):=
k∑
i=0

aΩ (ui, vk−i) +
k∑
i=1

(
i−1∑
j=0

ci,juj, vk−i

)
L2(Ω)

, k ∈ N0. (44)

Definition 5. A sequence Φ(u,v) = (Φ0(u,v),Φ1(u,v), ...,Φk(u,v), ...)> , u,v ∈ (H1(Ω))
∞

defined by formula (43) is called a bilinear form associated with the operator G.

Such notation of the bilinear form gives us ability to present relation (42) in the following
way

(Gu) ◦
H̃−1(Ω)

v = Φ(u,v)− γ1u ◦
H−1/2(Γ)

γ0v for each u ∈
(
H1(Ω, P )

)∞
,v ∈

(
H1(Ω)

)∞
,

(45)
and treat it as the the first Green formula for operator G. Note that for the left part of the
variational equality (40) we can analogously obtain the expression

(Gu) ◦
H−1(Ω)

v = Φ(u,v) for each u ∈
(
H1(Ω)

)∞
, v ∈

(
H1

0 (Ω)
)∞

, (46)

when using equality (8).
Due to the triangular structure of operator C, definition of the second Green formula may

be complicated. Because of that we assume that the C part of the differential operator G
satisfies the equality

(Cu) ◦
L2(Ω)

v = (Cv) ◦
L2(Ω)

u for eachu,v ∈ (L2(Ω))∞. (47)

This fact grants the symmetry of the operatorG with regard to the operation of q-convolution
of sequences and gives ability, analogously to [5], to present the second Green formula for
operator G in the case of variable coefficients.



22 Yu. A. MUZYCHUK, R. S. CHAPKO

Theorem 3. For sequences u,v ∈ (H1(Ω, P ))
∞ the following equality holds

(Gu) ◦
H̃−1(Ω)

v− (Gv) ◦
H̃−1(Ω)

u = γ1v ◦
H−1/2(Γ)

γ0u− γ1u ◦
H−1/2(Γ)

γ0v. (48)

Formula (48) is used to obtain an integral representation of the sequence u ∈
(H1(Ω, P ))

∞.

4. Integral representation of the solutions. Henceforth we assume all coefficients of
the operator G to be constant. Then property (47) will hold if the matrix C satisfies for
arbitrary sequences ξ,η ∈ R∞ the following condition

n∑
k=1

k−1∑
i=0

ck,iξiηn−k =
n∑
k=1

k−1∑
i=0

ck,iηiξn−k for each n ∈ N. (49)

In systems (10) that appear during the solution of non-stationary problems with first and
second order partial derivatives over the time variable the matrix C contains equal elements
on the diagonals

ck,i = ck−1,i−1, i, k ∈ N, (50)

which can be treated as a partial case of property (49). We will use it to simplify proofs of
some statements.

Let Ẽ(x) = (Ẽ0(x), Ẽ1(x), ...)>, x ∈ R3, be a fundamental solution of the operator G, i.e.
a solution of the equation

GẼ = δ̃ in
(
D′(R3)

)∞
, (51)

where δ̃(θ) = (δ(θ), δ(θ), ...)> is a functional sequence which elements are Dirac’s δ-function
([1]). It is known (see for example [13–15]), that in the case of systems with finite number
of equations and constant coefficients such a solution exists.

In [2, 3, 6, 7, 9–11] fundamental solutions for some infinite systems that are partial cases
of (10) have been obtained. These solutions can be characterized by the fact that their first
component is a function Ẽ0(x) = α1e

−α2|x||x|−1 and all other components have asymptotes
α1e

−α3|x||x|−1 when |x| → ∞ and α4|x|−1 when |x| → 0, where αi(i ∈ {1, 2, 3, 4}) are some
given positive constants. Moreover, each difference

Ei(x):=Ẽi(x)− Ẽi−1(x), i ∈ N, x ∈ R3, (52)

can be continued to some continuous function that has a continuous partial derivative
∂
∂r
Ei(x), r:=|x|. Henceforth we assume that a fundamental solution with suggested properti-

es can be built for the operator G.
Consider a sequence E(x) = (E0(x), E1(x), ...)>, where E0(x) = Ẽ0(x), and the rest of

the components are defined according to (52). The following statement holds.

Lemma 1. Sequence E(x) is a solution of

GE = δ̄ in
(
D′(R3)

)∞
, (53)

where δ̄(θ) = (δ(θ), 0, 0, ...)>.



VARIATIONAL PROBLEMS FOR INFINITE ELLIPTIC SYSTEMS 23

Proof. Consider the first equation of (53). Since E0(x) = Ẽ0(x), x ∈ R3, then taking into
account the definition of a fundamental solution Ẽ we get PE0 = PẼ0 = δ in D′(R3). If
k = 1 then the left part of the corresponding equation (53) can be written as a difference of
the expressions in the left parts of equations with indices k = 0 and k = 1. As a result we
obtain c1,0E0 + PE1 = c1,0Ẽ0 + PẼ1 − PẼ0 = δ − δ = 0 in D′(R3). Let’s consider now an
arbitrary k-th equation of (53).

k−1∑
i=0

ck,iEi + PEk = ck,0Ẽ0 +
k−1∑
i=1

ck,i(Ẽi − Ẽi−1) + P (Ẽk − PẼk−1) =

=
k−1∑
i=0

ck,iẼi + PẼk −
k−1∑
i=1

ck,iẼi−1 − PẼk−1 in D′(R3).

Then, taking into account the k-th and the (k−1)-st equations of (51) and the property (50)
of the components of the operator C, we get

k−1∑
i=0

ck,iEi + PEk = δ −

(
k−1∑
i=1

ck−1,i−1Ẽi−1 + PẼk−1

)
= δ − δ = 0 in D′(R3).

By means of the q-convolution and the sequence E we build sequences that, by analogy
with the theory of elliptic equations, will also be called potentials.

Definition 6. Let f ∈ (H̃−1
0 (Ω))∞ be a given sequence. The sequence u:=Uf, where

Uf(x):=(Uf)(x) ≡ f(·) ◦
H̃−1(Ω)

E(x− ·), x ∈ Ω, (54)

is called a volume potential of operator G.

Theorem 4. The operator U : (H̃−1
0 (Ω))∞ → (H1(Ω, P ))∞ is linear and separate continuous.

Moreover, for an arbitrary sequence f ∈ (H̃−1
0 (Ω))∞ the volume potential u = Uf belongs to

the space (H1(Ω, P ))∞ and satisfies the equation Gu = f in terms of (D′(Ω))∞.

Proof. The operator U is component-wise linear since this property holds for each expressi-
on Ujfi(x):= 〈fi(·), Ej(x− ·)〉H1(Ω) , x ∈ Ω, (i, j ∈ N0), of which every component of the
potential consists.

In the case of j = 0 function E0 is a fundamental solution of the operator P and U0fi
is a volume potential with density fi. This potential can be given as a sum U0 = U∗ + U+,
where U∗fi(x):= 〈fi(·), E∗(x− ·)〉H1(Ω), U

+fi(x):= 〈fi(·), E+(x− ·)〉H1(Ω), E
∗(x):=α1|x|−1 is

a fundamental solution of the Laplacian and E+(x) ∼ (c1 + c2|x|) when |x| → 0, c1 and c2

are some constants. According to Theorem 6.1 ([15]) for the reflection U∗ : H̃−1(Ω)→ H1(Ω)
we have ‖U∗fi‖H1(Ω) ≤ c∗‖fi‖H̃−1(Ω), i ∈ N0, where c∗ is some constant. The function E+

can be extended to x = 0 so that it and its derivative over r:=|x| are continuous when
|x| → 0. That is why for the reflection U+ : H̃−1(Ω) → H1(Ω) we also have ‖U+fi‖H1(Ω) ≤
c+‖fi‖H̃−1(Ω), i ∈ N0, where c+ is some constant. Thus, the operator U0 : H̃−1(Ω)→ H1(Ω)

is continuous and ‖U0fi‖H1(Ω) ≤ c0‖fi‖H̃−1(Ω), i ∈ N0, where c0 is some constant.
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If j ∈ N, then the kernels Ej in all the expressions Ujfi, i ∈ N0, behave themselves as
the function E+ when |x| → 0. Hence, each of these expressions defines a continuous map
from H̃−1(Ω) to H1(Ω) and for each k ∈ N we have the estimate

‖(Uf)k‖H1(Ω) =
∥∥∥ k∑
i=0

〈fi(·), Ek−i(• − ·)〉H1(Ω)

∥∥∥
H1(Ω)

≤ c̃k

k∑
i=0

‖(f)i‖H̃−1(Ω), (55)

where c̃k is some constant.
Consider the component-wise action of the volume potential on some test functions for

the case of f ∈ (L2(Ω))∞

〈(Uf)k(x), φ(x)〉D(Ω) =

(
k∑
i=0

(fi(y), Ek−i(x− y))L2(Ω) , φ(x)

)
L2(Ω)

=

=
k∑
i=0

(fi(y), Uk−iφ(y))L2(Ω) , k ∈ N0, φ ∈ D(Ω). (56)

Now if f ∈ (H̃−1(Ω))∞, then there exists some sequence f0, f1, ..., fn, ..., where fn ∈ (L2(Ω))∞,
that converges to f component-wisely by the norm of the space H̃−1(Ω). Since for each
component of this sequence as for an element of space (L2(Ω))∞ property (56) holds, it can
be extended to the elements of the space (H̃−1

0 (Ω))∞

〈(Uf)k(x), φ(x)〉D(Ω) =
k∑
i=0

〈fi(y), Uk−iφ(y)〉H1(Ω) , k ∈ N0, φ ∈ D(Ω). (57)

Let us substitute u = Uf into the equation Gu = f, treating it as a system. Then, taking
into account (57), the equation with an arbitrary index k ∈ N0 can be written as

〈(Gu)k(x), φ(x)〉D(Ω) =
k−1∑
i=0

ck,i 〈ui(x), φ(x)〉D(Ω) + 〈uk(x), Pφ(x)〉D(Ω) = (58)

=
k−1∑
i=0

ck,i

i∑
j=0

〈fj(y), Ui−jφ(y)〉H1(Ω) +
k∑
i=0

〈fi(y), Uk−iPφ(y)〉H1(Ω) .

After that, using the formula (see proof of lemma 5.2 in [5])

k−1∑
i=0

ck,i

i∑
j=0

〈fj(x), Ui−jφ(x)〉H1(Ω) =
k−1∑
i=0

〈
fi(y),

(
k−i−1∑
j=0

ck−i,jEj(x− y), φ(x)

)
L2(Ω)

〉
H1(Ω)

,

and shifting the operator P on the kernels of the potentials in the second part of the expres-



VARIATIONAL PROBLEMS FOR INFINITE ELLIPTIC SYSTEMS 25

sion (58), we get

〈(Gu)k(x), φ(x)〉D(Ω) =
k−1∑
i=0

〈
fi(y),

(
k−i−1∑
j=0

ck−i,jEj(x− y), φ(x)

)
L2(Ω)

〉
H1(Ω)

+

+
k∑
i=0

〈
fi(y), 〈PEk−i(x− y), φ(x)〉D(Ω)

〉
H1(Ω)

=

=
k−1∑
i=0

〈
fi(y),

〈
k−i−1∑
j=0

ck−i,jEj(x− y) + PEk−i(x− y), φ(x)

〉
D(Ω)

〉
H1(Ω)

+

+
〈
fk(y), 〈PE0(x− y), φ(x)〉D(Ω)

〉
H1(Ω)

=
k∑
i=0

〈
fi(y), 〈(GE)k−i(x− y), φ(x)〉D(Ω)

〉
H1(Ω)

=

= 〈fk(y), φ(y)〉D(Ω) , k ∈ N0.

Hence, Gu = f in (H̃−1(Ω))∞. In particular, taking into account (55), in the case of
f ∈ (H̃−1

0 (Ω))∞ we will obtain Uf ∈ (H1(Ω, P ))
∞ according to the definition of the space

(H1(Ω, P ))∞.

Now analogously to the volume potential we give the definitions of the layer potentials.

Definition 7. Let λ ∈
(
H1/2(Γ)

)∞ and µ ∈
(
H−1/2(Γ)

)∞. Sequences
Vµ(x):=(Vµ)(x) ≡ µ(·) ◦

H−1/2(Γ)
E(x− ·), x ∈ Ω, (59)

Wλ(x):=(Wλ)(x) ≡ ∂ν̄(·)E(x− ·) ◦
H−1/2(Γ)

λ(·), x ∈ Ω, (60)

are called the simple and the double layer potentials of the operator G on the surface Γ
correspondingly.

Lemma 2. For arbitrary sequences λ ∈
(
H1/2(Γ)

)∞ and µ ∈
(
H−1/2(Γ)

)∞ the layer potenti-
als u(x) = Vµ(x), x ∈ Ω, and u(x) = Wλ(x), x ∈ Ω, are the solutions of the homogeneous
equation

Gu = 0 (in Ω). (61)

According to the definitions the components of the layer potentials consist of the following
expressions Vjµi(x):= 〈µi(·), Ej(x− ·)〉H1/2(Γ) , Wjλi(x):=

〈
∂ν̄(·)Ej(x− ·), λi(·)

〉
H1/2(Γ)

, i, j ∈
N0, x ∈ Ω.

We consider them more accurately. Expressions V0µi and W0λi(i ∈ N0) are the simple
and the double layer potentials of the operator P respectively. In the case of the Lipschitz
boundary these potentials as long as their traces and co-normal derivatives define continuous
boundary operators on spaces H1/2(Γ) and H−1/2(Γ) respectively (see for example Theo-
rem 1 [12] and Theorem 5.6.2 [13]). Therefore, taking into account the continuity in the
domain Ω of functions Ej and their derivatives ∂

∂r
Ej when j ∈ N, we obtain the following

statement.
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Theorem 5. Operators

V : (H−1/2(Γ))∞ → (H1(Ω, P ))∞, W : (H1/2(Γ))∞ → (H1(Ω, P ))∞,

γ0V : (H−1/2(Γ))∞ → (H1/2(Γ))∞, γ1V : (H−1/2(Γ))∞ → (H−1/2(Γ))∞,

γ0W : (H1/2(Γ))∞ → (H1/2(Γ))∞, γ1W : (H1/2(Γ))∞ → (H−1/2(Γ))∞

are linear and separate continuous.

Using the potentials (54), (59)–(60) and the second Green formula we arrive at the
integral representation of the components of an arbitrary sequence u ∈ (H1(Ω, P ))

∞.

Theorem 6 ([5], Theorem 1). For sequences u ∈ (H1(Ω, P ))
∞ the following representation

holds
u(x) = Uf(x) + Vµ(x)−Wλ(x), x ∈ Ω, (62)

where f:=Gu, λ:=γ0u and µ:=γ1u.

Note, that according to Theorem 4 by means of the volume potential (54) we can always
build a partial solution of system (10) and reduce it to a homogeneous system. So, from
now on we will consider homogeneous systems only, that can be presented in the form of
(61). Then by Theorem 6, their generalized solution can be given by its boundary value
and the co-normal derivative on the boundary — the Cauchy data. As it can be seen from
the boundary conditions (27) and (37), in each of the boundary problems these data are
incomplete. To get a complete Cauchy data we need to consider corresponding boundary
integral equations that can be obtained by means of presentation (62). Note that this is the
so-called direct approach ( [13]) to replacement of the boundary value problems by integral
equations. To apply it we need to consider some properties of the layer potentials first.

Let [v] denote a jump of some function v over the boundary Γ from outside into inside
of the domain Ω.

Theorem 7 ([5], Theorem 9). Layer potentials (59) and (60) can be characterized by the
relations

[γ0Vµ] = 0, [γ1Vµ] = −µ for each µ ∈ (H−1/2(Γ))∞;

[γ0Wλ] = λ, [γ1Wλ] = 0 for each λ ∈ (H1/2(Γ))∞.

Henceforth we consider the boundary operators

V : (H−1/2(Γ))∞ → (H1/2(Γ))∞, K′ : (H−1/2(Γ))∞ → (H−1/2(Γ))∞,

K : (H1/2(Γ))∞ → (H1/2(Γ))∞, D : (H1/2(Γ))∞ → (H−1/2(Γ))∞,

that are defined by means of q-convolution with corresponding reflection q in the following
way

(Vµ)i :=
i∑

j=0

Vjµi−j, (Kλ)i :=
i∑

j=0

Kjλi−j,

(K′µ)i :=
i∑

j=0

K ′jµi−j, (Dλ)i :=
i∑

j=0

Djλi−j, i ∈ N0,
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for arbitrary sequences λ ∈
(
H1/2(Γ)

)∞ and µ ∈
(
H−1/2(Γ)

)∞.
Here we use the notation Vjµ:=γ0Vjµ,Djλ:=− γ1Wjλ, j ∈ N0. The boundary operators

Kj, K
′
j (j ∈ N0) act by the following rules

K ′0µ:=γ1V0µ− µ/2, K ′jµ:=γ1Vjµ, K0λ:=γ0W0λ+ λ/2, Kjλ:=γ0Wjλ, j ∈ N. (63)

According to Theorem 5 and the continuity of operators γ0 and γ1 the operators V, K′, K
and D are also separate continuous. Thus, the following relations hold

Vµ = γ0Vµ, Kλ = (γ0W + I/2)λ, K′µ = (γ1V− I/2)µ, Dλ = −γ1Wλ. (64)

Lemma 3. Operators

V : (H−1/2(Γ))∞ → (H1/2(Γ))∞, (I/2±K′) : (H−1/2(Γ))∞ → (H−1/2(Γ))∞, (65)

D : (H1/2(Γ))∞ → (H−1/2(Γ))∞, (−I/2±K) : (H1/2(Γ))∞ → (H1/2(Γ))∞ (66)

are bijective.

Proof. Let’s consider a homogeneous boundary integral equation of the first kind

Vµ = 0, µ ∈
(
H−1/2(Γ)

)∞
. (67)

If we come to the component-wise notation, then for the component µ0 we will have the
equation V0µ0 = 0, µ0 ∈ H−1/2(Γ). It is known ( [12,13]), that the operator V0 is H−1/2(Γ)-
elliptic. Hence, the previous equation has only trivial solution µ0 = 0. For the component
µ1 we obtain the same equation V0µ1 = 0, µ1 ∈ H−1/2(Γ), whereof follows that µ1 = 0. If
we continue these steps then each time we will have the same integral equation with trivial
solution. Thus, the equation (67) has only trivial solution µ = 0, hence the operator V is
injective.

Now we prove the surjectivity of the operatorV. Let h ∈
(
H1/2(Γ)

)∞ be a given sequence.
Consider the boundary equation

Vµ = h in
(
H1/2(Γ)

)∞
. (68)

In particular, for the component µ0 we have the following boundary integral equation of the
first kind

V0µ0 = h0 in H1/2(Γ). (69)

When considering its weak formulation, in the right hand side we obtain a continuous
on H−1/2(Γ) operator l0(h0):= 〈φ, h0〉H1/2(Γ). Moreover, the operator V0 is H−1/2(Γ)-elliptic
( [12, 13]). Hence from the Lax-Milgram lemma the existence and the uniqueness of the
solution µ0 ∈ H−1/2(Γ) of equation (69) follows.

After finding µ0 it can be moved to the right hand side of the boundary equation obtained
from (68) for µ1. After this transformation only the component µ1 will remain unknown in
this equation. Assuming that for an arbitrary index k ∈ N equations with indices i ∈
{0, 1, . . . , k − 1} have been already solved, then in the k-th equation we can separate the
elements and leave in the left hand side only the component with the unknown function µk
and the rest of the elements we can shift into the right hand side

V0µk = hk −
k−1∑
i=0

Vk−iµi in H1/2(Γ). (70)
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The obtained equation will differ from (69) only in the right hand side

h̃k:=hk −
k−1∑
i=0

Vk−iµi, (71)

which contains the components µi, i ∈ {0, 1, . . . , k−1}, — solutions of the previous equations.
It can be easily seen that h̃k ∈ H1/2(Γ). Hence, by analogy to equation (69), on each step
there exists a unique solution µk ∈ H−1/2(Γ) of equation (70). Thus, for an arbitrary sequence
h ∈

(
H1/2(Γ)

)∞ there exists a solution µ ∈ (H−1/2(Γ))∞ of equation (68) i.e. the operator V
is surjective.

Statement of the lemma regarding the other operators can be proved using the same
scheme. For instance, in the case of the operator D the homogeneous boundary integral
equation Dλ = 0, λ ∈

(
H1/2(Γ)

)∞
, can be split into a sequence of equations D0λk = 0,

λk ∈ H1/2(Γ), k ∈ N0, that due to the H1/2(Γ)-ellipticity of the operator D0 ([12, 13]) have
only trivial solution.

Consider the sequence g ∈
(
H−1/2(Γ)

)∞. Then the boundary equation Dλ = g in(
H−1/2(Γ)

)∞ will lead to the following sequence of boundary integral equations of the first
kind

D0λk = g̃k in H−1/2(Γ), k ∈ N0, (72)

that differ only in their right hand sides

g̃k = gk −
k−1∑
i=0

Dk−iλi, k ∈ N0. (73)

Since g̃k ∈ H−1/2(Γ), the existence of a unique solution of each of these equations follows
from the Lax-Milgram lemma due to the H1/2(Γ)-ellipticity of the operator D0 ([12, 13]).
Thus, the bijectivity of the operator D follows from the bijectivity of the operator D0 as
well.

We will demonstrate the proof of the statement of the lemma regarding the rest of the
operators based on the example of the operator (I/2−K′). Consider the equation

(I/2−K′)µ = 0 in
(
H−1/2(Γ)

)∞
. (74)

Firstly, we will show that the equation

µ0/2−K ′0µ0 = 0 in H−1/2(Γ) (75)

has only trivial solution. We assume that there exists another solution of this equation
µ̃ ∈ H−1/2(Γ) and construct a function ũ(x) = V0µ̃(x). This is a simple layer potential,
so, firstly, it satisfies the equation Pũ(x) = 0 in H̃−1

0 (Ω ∪ Ωe), where Ωe:=R3 \ Ω̄ ( [13]).
Secondly, the left hand side of equation (75) reflects the co-normal derivative γe1 of the
simple layer potential in the exterior domain Ωe. Hence we have γe1ũ = 0 on Γ. Then from
the first Green formula in the domain Ωe (see for example lemma 5.1.2 [13]) we come to the
variational equation aΩe(ũ, v) = 0 for each v ∈ H1(Ωe). Due to the ellipticity of the bilinear
form aΩe(·, ·) this equation has only trivial solution ũ = 0 in Ωe. Hence, we have γe0ũ = 0
on Γ. After that, based on the property of traces of a simple layer potential (see Theorem 7)
we obtain another boundary equality for the density µ̃ γ0V0µ̃ = γe0ũ = 0 in H−1/2(Γ). Taking
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into account the injectivity of the operator V0 from this follows that µ̃ = 0 i.e. the kernel of
the operator (I/2−K ′0) contains only zero element.

Since µ0 ≡ 0, for the component µ1 in equation (74) we will again obtain equation (75)
and as a result will have µ1 ≡ 0. If we continue this process, on each step we will get trivial
solution. Thus, µ ≡ 0 i.e. the operator (I/2−K′) is injective.

Consider a sequence g ∈
(
H−1/2(Γ)

)∞. Let us apply to the equation

(I/2−K′)µ = g in
(
H−1/2(Γ)

)∞
. (76)

The same approach as we did for the equations of the first kind. As a result, we will
obtain a sequence of the boundary integral equations of the second kind µk/2 − K ′0µk =
ǧk in H−1/2(Γ), k ∈ N0, where

ǧk:=gk +
k−1∑
i=0

K ′k−iµi. (77)

Since the operator (I/2 −K ′0) is injective and ǧk ∈ H−1/2(Γ), according to Theorem 5.6.12
([13]), that reflects the Fredholm alternative for such boundary equations, each of the equa-
tions of the second kind (76) will have a unique solution. Thus we get the existence of the
solution of the equation (76) for an arbitrary sequence g ∈

(
H−1/2(Γ)

)∞ i.e. the surjectivity
of the operator (I/2−K′).

Theorem 8. (i) If a pair of sequences (λ,µ) ∈
(
H1/2(Γ)

)∞× (H−1/2(Γ)
)∞ are the Cauchy

data of some generalized solution of the equation (61), then they satisfy both equations

− (I/2 + K)λ + Vµ = 0 in (H1/2(Γ))∞, (78)

Dλ + (−I/2 + K′)µ = 0 in (H−1/2(Γ))∞. (79)

(ii) If a pair of sequences (λ,µ) ∈
(
H1/2(Γ)

)∞×(H−1/2(Γ)
)∞ satisfy one of equations (78) or

(79), then they satisfy the second one and are the Cauchy data of some generalized solution
of equation (61).

Proof. Let u ∈ (H1(Ω, P ))
∞ be a generalized solution of equation (61). Then there exists

a pair of sequences (λ,µ) ∈
(
H1/2(Γ)

)∞ × (H−1/2(Γ)
)∞ that γ0u = λ and γ1u = µ.

Theorem 6 yields that
u(x) = Vµ(x)−Wλ(x), x ∈ Ω. (80)

Let us apply the trace operator γ0 to both parts of (80). Then, taking into account the
expressions for the traces of potentials (64), we obtain

γ0u = Vµ + (I/2−K)λ. (81)

Hence, after substitution of γ0u with its value λ we come to the relation (78). After appli-
cation of the co-normal derivative operator γ1 to both parts of (80) we obtain the following
equality

γ1u = (I/2 + K′)µ + Dλ, (82)

that after substitution of the co-normal derivative with its value µ can be reduced to (79).
Consider an arbitrary pair of sequences (λ,µ) ∈

(
H1/2(Γ)

)∞ × (H−1/2(Γ)
)∞. Then the

sequence u built by the formula (80) belongs to the space (H1(Ω, P ))
∞ (Theorem 5), satisfies

equation (61) (lemma 2) and its Cauchy data can be found by formulae (81) and (82). If we
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assume now that the sequence u is built of such pair (λ,µ), that satisfies relation (78), then
we will come to the equality −Kλ + Vµ = λ/2. After substituting the obtained expression
into (81) we finally get γ0u = λ.

Taking into account that for a sequence u as for an element of (H1(Ω, P ))
∞ the co-normal

is defined i.e. there exists some element µ∗ ∈
(
H−1/2(Γ)

)∞ that has γ1u = µ∗, then besides
(80) we will also have the following integral representation u(x) = Vµ∗(x)−Wλ(x). After
that we are able to write down the equality Vµ(x)−Wλ(x) = Vµ∗(x)−Wλ(x), x ∈ Ω, or
V(µ(x)−µ∗(x)) = 0, x ∈ Ω. Hence, applying the trace operator, we come to the boundary
integral equation V(µ(x)− µ∗(x)) = 0, x ∈ Γ, that according to Lemma 3 has only trivial
solution. As a result we get µ∗ = µ, whereof follows that γ1u = µ.

Now let u be a sequence, built of the pair (λ,µ), that satisfies equality (79). After
finding the expression Dλ + K′µ = 1

2
µ from this equality and substituting it into (82) we

get γ1u = µ. The sequence u has a trace i.e. there exists some element λ∗ ∈
(
H1/2(Γ)

)∞ that
γ0u = λ∗. Then the sequence u can be represented as u(x) = Vµ(x) −Wλ∗(x). Similarly
to the previous case we have the equality Vµ(x)−Wλ(x) = Vµ(x)−Wλ∗(x), x ∈ Ω, or
W(λ(x)−λ∗(x)) = 0, x ∈ Ω. Hence, applying the co-normal derivative operator, we obtain
the following boundary integral equation D(λ(x) − λ∗(x)) = 0, x ∈ Γ, that according to
Lemma 3 admits only trivial solution. As a result λ = λ∗ and γ0u = λ.

5. Boundary integral equations. Theorem 8 is a basis for the replacement of boundary
value problems with the corresponding boundary integral equations in regards to the Cauchy
datum that is not given explicitly in the formulation of the problem. Let us demonstrate
this procedure for the Dirichlet problem (10), (11) first. In this case the boundary condition
contains the given sequence λ = h̃ ∈ (H1/2(Γ))∞. Then, taking into account equation (78),
after substitution of the given trace into it we will obtain the following boundary integral
equation of the first kind in regards to the sequence µ

Vµ = (I/2 + K) h̃ in (H1/2(Γ))∞. (83)

If we substitute the known trace into the equation (79), we will come to the following
boundary integral equation

(I/2−K′)µ = Dh̃ in (H−1/2(Γ))∞. (84)

Theorem 9. The co-normal derivative of the generalized solution u ∈ (H1(Ω, P ))∞ of
the Dirichlet problem (10), (11) satisfies both boundary integral equations (83) and (84).
Conversely, if a sequence µ ∈ (H−1/2(Γ))∞ is a solution of one of boundary integral equati-
ons (83) or (84) then it will satisfy the other one and the function built by formula (80) with
λ = h̃ will be a generalized solution of the Dirichlet problem (10), (11).

Proof. Since the boundary integral equations (83) and (84) are in fact modified relations (78)
and (79), the correctness of both the direct and the inverse statements is granted by the
Theorem 8.

Now we consider the Neumann boundary value problem (10), (12). In this case the co-
normal derivative µ = g̃ ∈ (H−1/2(Γ))∞ is given and we can obtain the following boundary
integral equation for the unknown trace λ from equation (78)

(I/2 + K)λ = Vg̃ in (H1/2(Γ))∞. (85)
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On the other hand, if we start with equation (79) and substitute the given co-normal deri-
vative into it we will arrive at the boundary integral equation

Dλ = (I/2−K′) g̃ in (H−1/2(Γ))∞. (86)

Analogously to the previous case, Theorem 8 implies the following statement.

Theorem 10. The trace of a generalized solution u ∈ (H1(Ω, P ))∞ of the Neumann problem
(10), (12) satisfies both boundary integral equations (85) and (86). Conversely, if a sequence
λ ∈ (H1/2(Γ))∞ is a solution of one of the boundary integral equations (85) or (86) then
it will satisfy the other one and the function built by formula (80) with µ = g̃ will is a
generalized solution of the Neumann problem (10), (12).

Unlike the previous problems, in case of the Robin boundary value problem (10), (13) we
use both integral equalities (78) and (79). Since the Cauchy data of the solution are bound by
the boundary condition (13), we will find the co-normal derivative µ from it and substitute
it into (79). Then we will come to the following system of boundary integral equations{

Vµ− (I/2 + K)λ = 0 in (H1/2(Γ))∞,

(I/2 + K′)µ + (B + D)λ = g̃ in (H−1/2(Γ))∞.
(87)

Theorem 11. The trace and the co-normal derivative of a generalized solution u ∈
(H1(Ω, P ))∞ of the Robin problem (10), (13) satisfy the system of boundary integral equa-
tions (87). Conversely, if a pair of sequences λ ∈ (H1/2(Γ))∞ and µ ∈ (H−1/2(Γ))∞ is
a solution of the system of boundary integral equations (87) then the function built by
formula (80) will be the generalized solution of the Robin problem (10), (13).

Proof. Let a sequence u be a generalized solution of the boundary value problem (10), (13).
Since u ∈ (H1(Ω, P ))∞, according to the trace theorem and Lemma 3.2 ([12]) there exists
the trace and the co-normal derivative of each component of this sequence i.e. there exists
a pair of sequences γ0u=:λ ∈ (H1/2(Γ))∞ and γ1u=:µ ∈ (H−1/2(Γ))∞. By Theorem 8 this
pair of sequences satisfies equality (78) (also the first equation of the system (87)) and the
equality (79). Moreover, this pair satisfies the boundary condition (13). Hence we can define
the co-normal derivative through its trace. After substituting it into equality (79) we obtain
the second equation of system (87).

Now let a pair of sequences (λ,µ) ∈ (H1/2(Γ))∞ × (H−1/2(Γ))∞ be solutions of sys-
tem (87). Since these sequences satisfy equality (78), by Theorem 8 they also satisfy (79)
and are the Cauchy data of the generalized solution of equation (61) (i.e. the system (10)).
From equality (79) we get (I/2 + K′)µ + Dλ = µ and substitute this expression into the
second equation of system (87). Finally we obtain the equality µ+Bλ = g̃ in (H−1/2(Γ))∞,
that is a notation of boundary condition (13) through the pair of sequences (λ,µ).

Let us investigate the well-posedness of the obtained boundary integral equations.

Theorem 12. (i) For an arbitrary sequence h̃ ∈ (H1/2(Γ))∞ boundary integral equations
(83) and (84) have a unique solution µ ∈ (H−1/2(Γ))∞.
(ii) For an arbitrary sequence g̃ ∈ (H−1/2(Γ))∞ boundary integral equations (85) and (86)
have a unique solution λ ∈ (H1/2(Γ))∞.
(iii) For an arbitrary sequence g̃ ∈ (H−1/2(Γ))∞ the system of boundary integral equations
(87) has a unique solution (µ,λ) ∈ (H−1/2(Γ))∞ × (H1/2(Γ))∞.
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Proof. Consider the sequences h̃ ∈ (H1/2(Γ))∞ and g̃ ∈ (H−1/2(Γ))∞. Then according to
Theorem 5 and relation (64) we obtain (I/2 + K)h̃ ∈ (H1/2(Γ))∞, Dh̃ ∈ (H−1/2(Γ))∞,
Vg̃ ∈ (H1/2(Γ))∞, (I/2−K′)g̃ ∈ (H−1/2(Γ))∞. Thus the first two statements of the theorem
follow from lemma 3.

Now consider the system (87). Due to the bijectivity of the operator V there exists the
inverse operator V−1 : (H1/2(Γ))∞ → (H−1/2(Γ))∞. From the first equation of the system we
get µ = V−1(I/2 +K)λ. Note that in the general case it is complicated to find this operator
explicitly but the components of µ can be calculated in a numerical way.

Let us examine the structure of system (87). Thus, regarding the components λ0 and µ0

we obtain the following system{
V0µ0 − (I/2 +K0)λ0 = 0,

(I/2 +K ′0)µ0 + (b0,0I +D0)λ0 = g̃0.

After solving this system, in the following pair of the boundary integral equations regarding
(λ1, µ1) the solutions found on the previous step can be moved to the right hand side.
Continuing this process for an arbitrary index k ∈ N we obtain the following system of two
boundary integral equations{

V0µk − (I/2 +K0)λk = −
∑k−1

i=0 Vk−iµi +
∑k−1

i=0 Kk−iλi,

(I/2 +K ′0)µk + (bk,kI +D0)λk = g̃k −
∑k−1

i=0 K
′
k−iµi −

∑k−1
i=0 (bk,iI +Dk−i)λi.

(88)

Hereafter we will treat it as a system, enclosed into infinite system (87).
Now we investigate the solvability of system (88). Let us rewrite its first equation for

an arbitrary fixed k ∈ N0 in the following form

V0µk =
1

2
λk +

k∑
i=0

Kk−iλi −
k−1∑
i=0

Vk−iµi in H1/2(Γ), k ∈ N0, (89)

and substitute (formally) µk = V −1
0 (λk/2 +

∑k
i=0 Kk−iλi −

∑k−1
i=0 Vk−iµi) into the second

equation of the system (88). After moving all of the components with indices i ∈ {0, 1, . . . ,
k − 1} into the right hand side we will get the following boundary integral equation

(S0 + bk,kI)λk = g̃k
∗ in H−1/2(Γ), k ∈ N0, (90)

where

g̃k
∗:=g̃k −

k−1∑
i=0

K ′k−iµi −
k−1∑
i=0

(bk,iI +Dk−i)λi +

(
1

2
I +K ′0

)
V −1

0

(
k−1∑
i=0

Kk−iλi −
k−1∑
i=0

Vk−iµi

)
,

(91)
and the operator S0 : H1/2(Γ)→ H−1/2(Γ), that acts by the following rule S0:=D0 + (I/2 +
K ′0)V −1

0 (I/2 + K0), is called a symmetric Steklov-Poincare operator ([13, 15]). It is known
(see for example 5.6.7 in [13]), that the following equality holds for it 〈S0η, η〉Γ = 〈D0η, η〉Γ+
‖(I/2 + K0)η‖2

V −1 for each η ∈ H1/2(Γ), where ‖η‖2
V −1 :=〈V −1η, η〉Γ — is another norm in

H1/2(Γ).
Then, taking into account the ellipticity of the operator D0, we can write the following

relation for each η ∈ H1/2(Γ) 〈(S0+bk,kI)η, η〉Γ = 〈D0η, η〉Γ+‖(I/2+K0)η‖2
V −1+〈bk,kη, η〉Γ ≥
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b̃k‖η‖2
H1/2(Γ)

. It means that the operator of the left hand side of the equation (90) is H1/2(Γ)-
elliptic and according to the Lax-Milgram theorem this equation has a unique solution λk ∈
H1/2(Γ). After the inverse substitution of λk into the equation (89) we can find its unique
solution µk ∈ H−1/2(Γ).

Thus, for an arbitrary sequence g̃ ∈ (H−1/2(Γ))∞ there exists a unique pair of sequences
(µ,λ) ∈ (H−1/2(Γ))∞ × (H1/2(Γ))∞, that satisfy system (87).

Note the structure of boundary integral equations that have been obtained during the
reduction of the boundary value problems. When proving Theorem 12 for the Robin problem
we obtained a sequence of systems (88). If all of the coefficients bk,k in the Robin boundary
condition are equal then the operator of the left hand side in (88) will remain the same
for each k ∈ N0 and the right hand side will contain the solutions found on previous steps
besides given sequences.

Let’s show that the sequences of boundary integral equations for the Dirichlet and
Neumann boundary value problems will have the same property. Consider boundary integral
equation (83). It can be reduced to a sequence of boundary integral equations

V0µk =
1

2
h̃k +

k∑
i=0

Kk−ih̃i −
k−1∑
i=0

Vk−iµi in H1/2(Γ), k ∈ N0. (92)

As we can see for different values of k, equations (92) will differ only in their right hand
sides. The sequence of boundary integral equations of the first kind

D0λk =
1

2
g̃k −

k∑
i=0

K ′k−ig̃i −
k−1∑
i=0

Dk−iλi in H−1/2(Γ), k ∈ N0,

that are obtained from the equation (86), have the same property.
Applying the same approach for equations (84) and (85) we get the following sequences

of boundary integral equations of the second kind

1

2
µk −K ′0µk =

k∑
i=0

Dk−ih̃i +
k−1∑
i=0

K ′k−iµi in H
−1/2(Γ), k ∈ N0,

1

2
λk +K0λk =

k∑
i=0

Vk−ig̃i −
k−1∑
i=0

Kk−iλi in H1/2(Γ), k ∈ N0,

respectively.
As follows, after application of q-convolution of sequences to variational formulations

of boundary value problems all of the obtained sequences of boundary integral equations
will have a specified property. Since the boundary operators in the left hand sides of these
equations remain the same for each k ∈ N0, we can build efficient algorithms for their
numerical solution.

Thus, variational problems for infinite triangular systems, which consist of elliptic equa-
tions with variable coefficients, have been formulated and their well-posedness has been
shown. In the case of constant coefficients a representation of generalized solutions in the
form of potentials has been obtained, with which variational problems have been reduced to
triangular systems of boundary integral equations. By using the q-convolution of sequences,
components of the solution of the systems of boundary integral equations can consistently
be found from the relevant equations which differ only in the right hand side. In this case the
right hand side consists of the components of the solutions, found on previous steps, besides
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of the given Cauchy data. Solvability of such systems in the appropriate Sobolev spaces has
been established. Further, we plan to build efficient numerical methods, based on boundary
elements, for the solution of such systems.
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