Reference |
1. S. Albeverio, A.K. Motovilov, Operator integrals with respect to a spectral measure and solutions to
some operator equations, Fundamental and Applied Mathematics (to appear); arXiv: math.SP/0410577
v2.
2. S. Albeverio, A. Motovilov, A. Shkalikov, Bounds on variation of spectral subspaces under J-self-adjoint
perturbations, Integr. equ. oper. theory, 64 (2009), 455–486.
3. T.Ya. Azizov, I.S. Iokhvidov, Linear Operators in Spaces with Indefinite Metric. Wiley, Chichester,
1989.
4. C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys., 70 (2007), ¹6, 947–
1018.
5. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT-symmetry, Phys.
Rev. Lett., 80 (1998), 5243–5246.
6. C.M. Bender, D.C. Brody, H.F. Jones, Complex Extension of Quantum Mechanics, Phys. Rev. Lett.,
89 (2002), ¹27, 401–405.
7. C.M. Bender, H.F. Jones, Semiclassical Calculation of the C Operator in PT -Symmetric Quantum
Mechanics, Phys. Lett. A, 328 (2004), 102–109.
8. C.M. Bender, S.P. Klevansky, Nonunique C operator in PT quantum mechanics, Phys. Lett. A, 373
(2009), ¹31, 2670–2674.
9. C.M. Bender, Barnabas Tan, Calculation of the hidden symmetry operator for a PT-symmetric square
well, J. Phys. A, 39 (2006), ¹8, 1945–1953.
10. H.F. Jones, J. Mateo, Equivalent Hermitian Hamiltonian for the non-Hermitian ..x4 potential, Physical
Review, D, 73 (2006), 085002.
11. A. Grod, S. Kuzhel, V. Sudilovskaya, On operators of transition in Krein spaces, Opuscula Mathematica,
31 (2011), ¹1, 49–59.
12. R. Kretschmer, L. Szymanowski, Quasi-Hermiticity in infinite-dimensional Hilbert space, Physics Letters
A, 325 (2004), 112–117.
13. S. Kuzhel, On pseudo-Hermitian operators with generalized C-symmetries, Modern Analysis and Applications.
The Mark Krein Centenary Conference, Vol. 1: Operator theory and related topics, 375–385,
Oper. Teory Adv. Appl., 190, (2009).
14. A. Mostafazadeh, Pseudo-Hermitian Representation of Quantum Mechanics, Int. J. Geom. Meth. Mod.
Phys., 7 (2010), 1191–1306.
15. A. Mostafazadeh, Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries, J. Math. Phys., 44
(2003), 974–989.
16. S. Pedersen, Anticommuting self-adjoint operators, J. Funct. Analysis, 89 (1990), 428–443.
|