Boolean independent sequences and Bourgain-Rosenthal’s theorem (in Ukrainian)

Author V. V. Mykhaylyuk
vmykhaylyuk@ukr.net
×åðí³âåöüêèé íàö³îíàëüíèé óí³âåðñèòåò ³ì. Þ. Ôåäüêîâè÷à

Abstract A property of boolean independent sequences of pairs of sets is obtained. This completes the proof of Bourgain-Rosenthal's theorem on narrow operators.
Keywords boolean independent sequence; narrow operator
Reference 1. A.M. Plichko, M.M. Popov, Symmetric function spaces on atomless probability spaces, Diss. Math. (Rozpr. mat.), 306 (1990), 1–85.

2. M. Popov, Narrow operators (a survey), Function Spaces IX, Banach Center Publ., Warszawa, 92 (2011), 299–326.

3. J. Bourgain, H. Rosenthal, Applications of the theory of semi-embeddings to Banach space theory, J. Func. Anal., 52 (1983), 149–188.

4. H. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc., 84 (1971), 13–36.

Pages 174-178
Volume 37
Issue 2
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML