|
Elementary reduction of matrices over Bezout ring with stable range 1 (in Ukrainian) |
Author |
O. M. Romaniv
oromaniv@franko.lviv.ua
Ivan Franko National University of Lviv
|
Abstract |
We prove that a commutative Bezout ring with stable range 1 is a ring with elementary
reduction of matrices and that every singular matrice over commutative Bezout ring with stable
range 1 is products of idempotent matrices. |
Keywords |
stable range; omega-Euclidean ring; Bezout ring; Hermite ring; alementary reduction of matrices;
idempotent matrices |
Reference |
1. Cohn P. On the structure of the $GL_2$ of a ring// I. H. E. S. Publ. Math. – 1996. – V.30. – P. 365–413.
2. Bougaut B. Anneaux Quasi-Euclidiens. These de docteur troisieme cycle. – 1976. – 67 p.
3. Zabavsky B. Rings with elementary reduction of matrices. Ring Theory Confer. Miskolc, Hungary, 1996.
4. Kaplansky I. Elementary divisors and modules// Trans. Amer. Math. Soc. – 1966. – V.166. – P. 464–491.
5. Vaserstein L.N. The stable rank of rings and dimensionality of topological spaces// Functional. Anal. Appl.
– 1971. – V.5. – P. 102–110.
6. Zabavskij B.V., Romaniv O.M. Noncommutative rings with elementary reduction of matrices// Visn. Lviv.
Univ., Ser. Mekh.-Mat. – 1998. – V.49. – P. 16–20. (in Ukrainian)
7. Bhaskara Rao K.P.S. Products of idempotent matrices over integral domains// Linear Algebra and its
Applications. – V.430, ¹10. – P. 2690–2695.
|
Pages |
132-135 |
Volume |
37 |
Issue |
2 |
Year |
2012 |
Journal |
Matematychni Studii |
Full text of paper |
PDF |
Table of content of issue |
HTML |