Existence of periodic travelling waves in Fermi-Pasta-Ulam system on 2D–lattice(in Ukrainian)

Author S. M. Bak
Sergіy.Bak@gmail.com
Вінницький державний педагогічний університет ім. М. Коцюбинського

Abstract It is considered the system of differential equations that describes the dynamics of an infinite system of atoms on 2D{lattice. Results on existence of the periodic travelling waves are obtained.
Keywords system of differential equation; periodic travelling waves; 2D–lattice
DOI
doi:10.30970/ms.37.1.76-88
Reference 1. Bak S.M. Existence of periodic travelling waves in systems of nonlinear oscillators on 2D-lattice// Mat. Stud. – 2011. – V.35, №1. – P. 60–65. (in Ukrainian)

2. Бак С.М., Баранова О.О., Білик Ю.П. Коректність задачі Коші для нескінченної системи нелінійних осциляторів, розміщених на двовимірній решітці// Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. праць. - Кам'янець-Подільський: Кам'янець-Подільський національний університет імені Івана Огієнка, 2010. - Вип. 4. - С. 18-24.

3. Bak S.M., Pankov A.A. The travelling waves in systems of oscillators on 2Dlattice// Ukr. Mat. Visn. – 2010. – V.7, №2. – P. 154–175. (in Ukrainian)

4. Вайнберг М.М., Вариационный метод и метод монотонных операторов. - М.: Наука, 1972. - 415 с.

5. Красносельский М.А. Топологические методы в теории нелинейных интегральных уравнений. - М.: Гостехиздат, 1956. - 392 с.

6. Reed M., Simon B., Methods of modern mathematical physics. Academic press, New York–San Fransisco, London, 1975.

7. Aubry S. Breathers in nonlinear lattices: Existence, linear stability and quantization// Physica D. – 1997. – V.103. – P. 201–250.

8. Bak S.M. Peridoc traveling waves in chains of oscillators// Communications in Mathematical Analysis. – 2007. – V.3, №1. – P. 19–26.

9. Berestycki H., Capuzzo-Dolcetta I., Nirenberg L. Variational methods for indefinite superlinear homogeneous elliptic problems// Nonlin. Diff. Equat. Appl. – 1995. – V.2. – P. 553-572.

10. Braun O.M., Kivshar Y.S. Nonlinear dynamics of the Frenkel–Kontorova model// Physics Repts. – 1998. – V.306. – P. 1–108.

11. Braun O.M., Kivshar Y.S., The Frenkel–Kontorova model. – Berlin: Springer, 2004. – 427 p.

12. Butt I., Wattis J. Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice// J. Phys. A: Math. Gen. – 2006. – V.39. – P. 4955–4984.

13. Feckan M., Rothos V. Traveling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions// Nonlinearity. – 2007. – V.20. – P. 319–341.

14. Friesecke G., Matthies K. Geometric solitary waves in a 2D math-spring lattice// Discrete and continuous dynamical systems. – 2003. – V.3, №1. – P. 105–114.

15. Pankov A., Traveling Waves and Periodic Oscillations in Fermi–Pasta–Ulam Lattices. – London – Singapore: Imperial College Press, 2005. – 196 p.

16. Rabinowitz P., Minimax methods in critical point theory with applications to differential equations. – Providence, R. I.: American Math. Soc. – 1986. – 100 p.

17. Srikanth P. On periodic motions of two-dimentional lattices// Functional analysis with current applications in science, technology and industry. – 1998. – V.377. – P. 118–122.

18. Tang C., Guo B. Multiple periodic solutions for two-dimensional lattice dynamic systems// Nonlin. Analysis. – 2006. – V.65. – P. 1306–1317.

19. Willem M., Minimax theorems. – Boston, Birkh.auser, 1996. – 162 p.

Pages 76-88
Volume 37
Issue 1
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML