Existence of periodic travelling waves in Fermi-Pasta-Ulam system on 2Dlattice(in Ukrainian)

Author S. M. Bak
Sergy.Bak@gmail.com
³ . .

Abstract It is considered the system of differential equations that describes the dynamics of an infinite system of atoms on 2D{lattice. Results on existence of the periodic travelling waves are obtained.
Keywords system of differential equation; periodic travelling waves; 2Dlattice
Reference 1. Bak S.M. Existence of periodic travelling waves in systems of nonlinear oscillators on 2D-lattice// Mat. Stud. 2011. V.35, 1. P. 6065. (in Ukrainian)

2. .., .., .. , // ' . : Գ- : . . . - '-: '- 㳺, 2010. - . 4. - . 18-24.

3. Bak S.M., Pankov A.A. The travelling waves in systems of oscillators on 2Dlattice// Ukr. Mat. Visn. 2010. V.7, 2. P. 154175. (in Ukrainian)

4. .., . - .: , 1972. - 415 .

5. .. . - .: , 1956. - 392 .

6. Reed M., Simon B., Methods of modern mathematical physics. Academic press, New YorkSan Fransisco, London, 1975.

7. Aubry S. Breathers in nonlinear lattices: Existence, linear stability and quantization// Physica D. 1997. V.103. P. 201250.

8. Bak S.M. Peridoc traveling waves in chains of oscillators// Communications in Mathematical Analysis. 2007. V.3, 1. P. 1926.

9. Berestycki H., Capuzzo-Dolcetta I., Nirenberg L. Variational methods for indefinite superlinear homogeneous elliptic problems// Nonlin. Diff. Equat. Appl. 1995. V.2. P. 553-572.

10. Braun O.M., Kivshar Y.S. Nonlinear dynamics of the FrenkelKontorova model// Physics Repts. 1998. V.306. P. 1108.

11. Braun O.M., Kivshar Y.S., The FrenkelKontorova model. Berlin: Springer, 2004. 427 p.

12. Butt I., Wattis J. Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice// J. Phys. A: Math. Gen. 2006. V.39. P. 49554984.

13. Feckan M., Rothos V. Traveling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions// Nonlinearity. 2007. V.20. P. 319341.

14. Friesecke G., Matthies K. Geometric solitary waves in a 2D math-spring lattice// Discrete and continuous dynamical systems. 2003. V.3, 1. P. 105114.

15. Pankov A., Traveling Waves and Periodic Oscillations in FermiPastaUlam Lattices. London Singapore: Imperial College Press, 2005. 196 p.

16. Rabinowitz P., Minimax methods in critical point theory with applications to differential equations. Providence, R. I.: American Math. Soc. 1986. 100 p.

17. Srikanth P. On periodic motions of two-dimentional lattices// Functional analysis with current applications in science, technology and industry. 1998. V.377. P. 118122.

18. Tang C., Guo B. Multiple periodic solutions for two-dimensional lattice dynamic systems// Nonlin. Analysis. 2006. V.65. P. 13061317.

19. Willem M., Minimax theorems. Boston, Birkh.auser, 1996. 162 p.

Pages 76-88
Volume 37
Issue 1
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML