Reference |
1. O. Rausenberger, Lehrbuch der Theorie der periodischen functionen einer Variabeln, Leipzig, Druck und
Ferlag von B.G.Teubner, 1884, 470 p.
2. G. Valiron, Cours d’Analyse Mathematique, Theorie des fonctions, 2nd Edition, Masson etCie, Paris,
1947, 522 p.
3. D.G. Crowdy, Geometric function theory: a modern view of a classical subject, IOP Pablishing Ltd and
London Mathematical Society, Nonlinearity, 21 (2008), T205–T219.
4. D.G. Crowdy, Exact solutions on Steady Capillary Waves on a Fluid Annulus, J.Nonlinear Sci., 9 (1999),
615–640.
5. S. Richardson, Hele-Shaw flaws with time dependent free boundaries involving a concentric annulus,
Philosophical Transactions: Mathemetical, Physical and Engeneering Sciences, 354 (1996), ¹1718, 2513–
2553.
6. Y. Hellegouarch, Invitation to the Mathematics of Fermat-Wiles, Academic Press, 2002, 381 p.
7. A.Ya. Khrystiyanyn, A.A. Kondratyuk, On the Nevanlinna Theory for meromorphic functions on
annuli. I, Mat. Stud., 23 (2005), ¹1, 19–30.
8. A.Ya. Khrystiyanyn, A.A. Kondratyuk, On the Nevanlinna Theory for meromorphic functions on
annuli. II, Mat. Stud., 24 (2005), ¹1, 57–68.
9. A. Kondratyuk, I. Laine, Meromorphic functions in multiply connected domains, Fourier series method
in complex analysis (Merkrij.arvi, 2005), Univ. Joensuu Dept. Math. Rep. Ser., 10 (2006), 9–111.
10. J.E. Littlewood, On the zeros of the Riemann zeta-function, Proc. Camb. Philos. Soc., 22 (1924), 295–
318.
11. J.C. Titchmarsh, The theory of the Riemann zeta-function, Second edition, Revised by D.R. Heath-
Brown. Oxford, 1986, 412 p.
12. F. Klein, Zur Theorie der Abel’schen Functionen, Math. Ann., 36 (1890), 1–83.
13. F. Schottky, Uber eine specielle Function welche bei einer bestimmten linearen Transformationihres
Arguments unver.andert bleibt, J. Reine Angew. Math., 101 (1887), 227–272.
|