| Abstract |
Let $\mathcal{R}\in(0,+\infty]$, $f(z)=\sum c_nz^n$ be an analytic function in the disk $\{z\colon |z|<\mathcal{R}\}$, $T_f(r)$ be the Nevanlinna characteristic,
$N_f(r,\alpha,\beta,a)$ be the integrated counting function of $a$-points of $f$ in the sector $0<|z|\le r$, $\alpha\le\arg_{\alpha} z<\beta$, and $(\omega_n(\omega))$ be a~sequence of independent equidistributed on $[0,1]$ random variables. Under some conditions on the growth of $f$ it is proved that for random analytic function $f_\omega(z)=\sum e^{2\pi i\omega_n(\omega)}a_nz^n$ almost surely for every $a\in\mathbb{C}$ and all $\alpha<\beta\le\alpha+2\pi$ the relation $N_{f_\omega}(r,\alpha,\beta,a)\sim\frac{\beta-\alpha}{2\pi}T_{f_\omega}(r)$, $r\to\mathcal{R}$, holds outside some exceptional set $E\subset(0,\mathcal{R})$. |
| Reference |
1. Hayman W.K. Meromorphic functions. – Clarendon Press (Oxford), 1964.
2. Goldberg A.A., Ostrovskii I.V. Value distribution of meromorphic functions. – Translations of
Mathematical Monographs, V.236. American Mathematical Society, Providence, R.I., 2008.
3. Kahane J.-P. Some Random Series of Functions. – Cambridge University Press, 1994.
4. Offord A.C. The distribution of the values of a random function in the unit disk// Studia Math. – 1972. –
V.41. – P. 71–106.
5. Mahola M.P., Filevych P.V. The value distribution of a random entire function// Mat. Stud. – 2010. –
V.34, №2. – P. 120–128.
6. Hayman W.K. Angular value distribution of power series with gaps// Proc. London Math. Soc. (3). –
1972. – V.24. – P. 590–624.
7. Murai T. The deficiency of entire functions with Fej.er gaps// Ann. Inst. Fourier (Grenoble). – 1983. –
V.33. – P. 39–58.
8. Hayman W.K., Rossi J.F. Characteristic, maximum modulus and value distribution// Trans. Amer. Math.
Soc. – 1984. – V.284, №2. – P. 651–664.
9. Offord A.C. The distribution of the values of an entire function whose coefficients are independent
random variables (I)// Proc. London Math. Soc. – 1965. – V.14A. – P. 199–238.
10. Offord A.C. The distribution of the values of an entire function whose coefficients are independent
random variables (II)// Math. Proc. Cambridge Phil. Soc. – 1995. – V.118, №3. – P. 527–542.
11. Filevych P.V. Some classes of entire functions in which the Wiman-Valiron inequality can be almost
certainly improved// Mat. Stud. – 1996. – V.6. – P. 59–66. (in Ukrainian)
12. Filevych P.V. Correlations between the maximum modulus and maximum term of random entire functions//
Mat. Stud. – 1997. – V.7, №2. – P. 157–166. (in Ukrainian)
13. Filevych P.V. Wiman–Valiron type inequalities for entire and random entire functions of finite logarithmic
order// Sib. Mat. Zhurn. – 2003. – V.42, №3. – P. 683–694. (in Russian). English translation in:
Siberian Math. J. – 2003. – V.42, №3. – P. 579–586.
14. Filevych P.V. On relations between the abscissa of convergence and the abscissa of absolute convergence
of random Dirichlet series// Mat. Stud. – 2003. – V.20, №1. – P. 33–39.
15. Filevych P.V. The Baire categories and Wiman’s inequality for entire functions// Mat. Stud. – 2003. –
V.20, №2. – P. 215–221.
16. Skaskiv O.B. Random gap series and Wiman’s inequality// Mat. Stud. – 2008. – V.30, №1. – P. 101–106.
(in Ukrainian)
17. Skaskiv O.B., Zrum O.V. On an exeptional set in the Wiman inequalities for entire functions// Mat.
Stud. – 2004. – V.21, №1. – P. 13–24. (in Ukrainian)
18. Zrum O.V., Skaskiv O.B. On Wiman’s inequality for entire functions of two variables// Mat. Stud. –
2005. – V.23, .2. – P. 149–160. (in Ukrainian)
19. Zrum O.V., Skaskiv O.B. Wiman’s inequalities for entire functions of two complex variables with rapidly
oscillating coefficients// Math. Meth. Fhys.-Mech. Filds. – 2005. – V.48, №4. – P. 78–87. (in Ukrainian)
20. Skaskiv O.B., Zrum O.V. Wiman’s inequalities for entire functions of two complex variables with rapidly
oscillating coefficients// Math. Bull. Shevchenko Sci. Soc. – 2006. – V.3. – P. 56–68. (in Ukrainian)
21. Zadorozhna O.Yu., Skaskiv O.B. On the domains of convergence of the double random Dirichlet series//
Mat. Stud. – 2009. – V.32, №1. – P. 81–85. (in Ukrainian)
22. Skaskiv O.B., Zadorozhna O.Yu. On domains of convergence of multiple random Dirichlet series// Mat.
Stud. – 2011. – V.36, №1. – P. 51–57.
23. Skaskiv O.B., Kuryliak A.O. Direct analogues of Wiman’s inequality for analytic functions in the unit
disc// Carpathian Math. Publications. – 2010. – V.2, №1. – P. 109–118. (in Ukrainian)
24. Skaskiv O.B., Kuryliak A.O. The probability of absence zeros in the disc for some random analytic
functions// Math. Bull. Shevchenko Sci. Soc. – 2011. – V.8. – P. 335–352.
25. Benbourenane D., Korhonen R. On the growth of the logarithmic derivative// Comput. Meth. Func.
Theory. – 2001. – V.1, №2. – P. 301–310.
26. Kondratyuk A.A., Kshanovskyy I.P. On the logarithmic derivative of a meromorphic function// Mat.
Stud. – 2004. – V.21, №1. – P. 98–100.
27. Hayman W.K., Kennedy P.B. Subharmonic functions. V.1. – London Mathematical Society Monographs,
.9, Academic Press, London, 1976.
28. Levin B.Ja. Lectures on entire functions. – Translations of Mathematical Monographs, vol. 150, American
Mathematical Society, Providence, R.I., 1996.
29. Andrusyak I.V., Filevych P.V. Minimal growth of an entire function with given zeros// Sci. Bull. Chernivtsi
Univ., Ser. Math. – 2008. – V.421. – P. 13–19. (in Ukrainian)
|