Abstract |
Let $\mathcal{R}\in(0,+\infty]$, $f(z)=\sum c_nz^n$ be an analytic function in the disk $\{z\colon |z|<\mathcal{R}\}$, $T_f(r)$ be the Nevanlinna characteristic,
$N_f(r,\alpha,\beta,a)$ be the integrated counting function of $a$-points of $f$ in the sector $0<|z|\le r$, $\alpha\le\arg_{\alpha} z<\beta$, and $(\omega_n(\omega))$ be a~sequence of independent equidistributed on $[0,1]$ random variables. Under some conditions on the growth of $f$ it is proved that for random analytic function $f_\omega(z)=\sum e^{2\pi i\omega_n(\omega)}a_nz^n$ almost surely for every $a\in\mathbb{C}$ and all $\alpha<\beta\le\alpha+2\pi$ the relation $N_{f_\omega}(r,\alpha,\beta,a)\sim\frac{\beta-\alpha}{2\pi}T_{f_\omega}(r)$, $r\to\mathcal{R}$, holds outside some exceptional set $E\subset(0,\mathcal{R})$. |
Reference |
1. Hayman W.K. Meromorphic functions. Clarendon Press (Oxford), 1964.
2. Goldberg A.A., Ostrovskii I.V. Value distribution of meromorphic functions. Translations of
Mathematical Monographs, V.236. American Mathematical Society, Providence, R.I., 2008.
3. Kahane J.-P. Some Random Series of Functions. Cambridge University Press, 1994.
4. Offord A.C. The distribution of the values of a random function in the unit disk// Studia Math. 1972.
V.41. P. 71106.
5. Mahola M.P., Filevych P.V. The value distribution of a random entire function// Mat. Stud. 2010.
V.34, Ή2. P. 120128.
6. Hayman W.K. Angular value distribution of power series with gaps// Proc. London Math. Soc. (3).
1972. V.24. P. 590624.
7. Murai T. The deficiency of entire functions with Fej.er gaps// Ann. Inst. Fourier (Grenoble). 1983.
V.33. P. 3958.
8. Hayman W.K., Rossi J.F. Characteristic, maximum modulus and value distribution// Trans. Amer. Math.
Soc. 1984. V.284, Ή2. P. 651664.
9. Offord A.C. The distribution of the values of an entire function whose coefficients are independent
random variables (I)// Proc. London Math. Soc. 1965. V.14A. P. 199238.
10. Offord A.C. The distribution of the values of an entire function whose coefficients are independent
random variables (II)// Math. Proc. Cambridge Phil. Soc. 1995. V.118, Ή3. P. 527542.
11. Filevych P.V. Some classes of entire functions in which the Wiman-Valiron inequality can be almost
certainly improved// Mat. Stud. 1996. V.6. P. 5966. (in Ukrainian)
12. Filevych P.V. Correlations between the maximum modulus and maximum term of random entire functions//
Mat. Stud. 1997. V.7, Ή2. P. 157166. (in Ukrainian)
13. Filevych P.V. WimanValiron type inequalities for entire and random entire functions of finite logarithmic
order// Sib. Mat. Zhurn. 2003. V.42, Ή3. P. 683694. (in Russian). English translation in:
Siberian Math. J. 2003. V.42, Ή3. P. 579586.
14. Filevych P.V. On relations between the abscissa of convergence and the abscissa of absolute convergence
of random Dirichlet series// Mat. Stud. 2003. V.20, Ή1. P. 3339.
15. Filevych P.V. The Baire categories and Wimans inequality for entire functions// Mat. Stud. 2003.
V.20, Ή2. P. 215221.
16. Skaskiv O.B. Random gap series and Wimans inequality// Mat. Stud. 2008. V.30, Ή1. P. 101106.
(in Ukrainian)
17. Skaskiv O.B., Zrum O.V. On an exeptional set in the Wiman inequalities for entire functions// Mat.
Stud. 2004. V.21, Ή1. P. 1324. (in Ukrainian)
18. Zrum O.V., Skaskiv O.B. On Wimans inequality for entire functions of two variables// Mat. Stud.
2005. V.23, .2. P. 149160. (in Ukrainian)
19. Zrum O.V., Skaskiv O.B. Wimans inequalities for entire functions of two complex variables with rapidly
oscillating coefficients// Math. Meth. Fhys.-Mech. Filds. 2005. V.48, Ή4. P. 7887. (in Ukrainian)
20. Skaskiv O.B., Zrum O.V. Wimans inequalities for entire functions of two complex variables with rapidly
oscillating coefficients// Math. Bull. Shevchenko Sci. Soc. 2006. V.3. P. 5668. (in Ukrainian)
21. Zadorozhna O.Yu., Skaskiv O.B. On the domains of convergence of the double random Dirichlet series//
Mat. Stud. 2009. V.32, Ή1. P. 8185. (in Ukrainian)
22. Skaskiv O.B., Zadorozhna O.Yu. On domains of convergence of multiple random Dirichlet series// Mat.
Stud. 2011. V.36, Ή1. P. 5157.
23. Skaskiv O.B., Kuryliak A.O. Direct analogues of Wimans inequality for analytic functions in the unit
disc// Carpathian Math. Publications. 2010. V.2, Ή1. P. 109118. (in Ukrainian)
24. Skaskiv O.B., Kuryliak A.O. The probability of absence zeros in the disc for some random analytic
functions// Math. Bull. Shevchenko Sci. Soc. 2011. V.8. P. 335352.
25. Benbourenane D., Korhonen R. On the growth of the logarithmic derivative// Comput. Meth. Func.
Theory. 2001. V.1, Ή2. P. 301310.
26. Kondratyuk A.A., Kshanovskyy I.P. On the logarithmic derivative of a meromorphic function// Mat.
Stud. 2004. V.21, Ή1. P. 98100.
27. Hayman W.K., Kennedy P.B. Subharmonic functions. V.1. London Mathematical Society Monographs,
.9, Academic Press, London, 1976.
28. Levin B.Ja. Lectures on entire functions. Translations of Mathematical Monographs, vol. 150, American
Mathematical Society, Providence, R.I., 1996.
29. Andrusyak I.V., Filevych P.V. Minimal growth of an entire function with given zeros// Sci. Bull. Chernivtsi
Univ., Ser. Math. 2008. V.421. P. 1319. (in Ukrainian)
|