Continuous and dually continuous idempotent L-semimodules

Author O. R. Nykyforchyn
Vasyl’ Stefanyk Precarpathian National University

Abstract We introduce L-idempotent analogues of topological vector spaces by means of domain theory, study their basic properties, and prove the existence of free (dually) continuous L-semi- modules over domains, (dually) continuous lattices and semilattices.
Keywords continuous lattice; idempotent semimodule; free object
Reference 1. M. Akian, Densities of invariant measures and large deviations, Trans. Amer. Math. Soc., 351 (1999), ¹11, 4515–4543.

2. G. Cohen, S. Gaubert, J.-P. Quadrat, Duality and separation theorems in idempotent semimodules, arXiv: math/0212294v2 [math.FA], 29 Sep 2003.

3. M. Ern.e, Z-distributive function spaces, preprint, 1998.

4. G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, V.93, Cambridge University Press, 2003.

5. P. H.ajek, Fuzzy logics with noncommutative conjuctions, J. Logic Computation, 13 (2003), ¹4, 469–479.

6. R. Heckmann, M. Huth, A duality theory for quantitative semantics, in: Proceedings of the 11th International Workshop on Computer Science Logic, V.1414 of Lecture Notes in Computer Science, Springer Verlag, 1998, 255–274.

7. P.T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, V.3, Cambridge University Press, New York, 1983.

8. V.N. Kolokoltsov, V.P. Maslov, Idempotent Analysis and Its Applications, Kluwer Acad. Publ., Dordrecht, 1998.

9. J.D. Lawson, Idempotent analysis and continuous semilattices, Theor. Comp. Sci., 316 (2004), 75–87.

10. W. Longstaff, Strongly reflexive lattices, Journal of the London Mathematical Society, 2 (1975), 491–498.

11. S. Mac Lane, Categories for the Working Mathematician, 2nd ed. Springer, New York, 1998.

12. O.R. Nykyforchyn, Capacities with values in compact Hausdorff lattices, Applied Categorical Structures, 15 (2008), ¹3, 243–257.

13. O. Nykyforchyn, Adjoints and monads related to compact lattices and compact Lawson idempotent semimodules, Order (14 March 2011), P. 1–21, DOI 10.1007/s11083-011-9208-2.

14. O. Nykyforchyn, O. Mykytsey, Conjugate measures on semilattices, Visnyk LNU, Ser. mech.-mat, 72 (2010), 88–99.

15. O. Nykyforchyn, O. Mykytsey, L-idempotent linear operators between predicate semimodules, dual pairs and conjugate operator, Mathematical Bulletin of the Shevchenko Scientific Society, 8 (2011), 299–314.

16. O.R. Nykyforchyn, D. Repov.s, Idempotent convexity and algebras for the capacity monad and its submonads, Applied Categorical Structures, 19 (2011), ¹4, 709–727.

17. O.R. Nykyforchyn, D. Repov.s, L-fuzzy strongest postcondition predicate transformers as L-idempotent linear or affine operators between semimodules of monotonic predicates, preprint, 2011.

18. K. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Mathematics Series 234, Longman Scientific & Technical, Wiley, Essex, England, New York, 1990.

19. I. Singer, V. Nitica, Contributions to max-min convex geometry. I: Segments, Lin. Alg. Appl., 428 (2008), 1439–1459.

20. I. Singer, V. Nitica, Contributions to max-min convex geometry. I: Semispaces and convex sets, Lin. Alg. Appl., 428 (2008), 2085–2115.

Pages 3-28
Volume 37
Issue 1
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML