Reference |
1. M. Akian, Densities of invariant measures and large deviations, Trans. Amer. Math. Soc., 351 (1999),
¹11, 4515–4543.
2. G. Cohen, S. Gaubert, J.-P. Quadrat, Duality and separation theorems in idempotent semimodules,
arXiv: math/0212294v2 [math.FA], 29 Sep 2003.
3. M. Ern.e, Z-distributive function spaces, preprint, 1998.
4. G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, Continuous Lattices and
Domains. Encyclopedia of Mathematics and its Applications, V.93, Cambridge University Press, 2003.
5. P. H.ajek, Fuzzy logics with noncommutative conjuctions, J. Logic Computation, 13 (2003), ¹4, 469–479.
6. R. Heckmann, M. Huth, A duality theory for quantitative semantics, in: Proceedings of the 11th International
Workshop on Computer Science Logic, V.1414 of Lecture Notes in Computer Science, Springer
Verlag, 1998, 255–274.
7. P.T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, V.3, Cambridge University
Press, New York, 1983.
8. V.N. Kolokoltsov, V.P. Maslov, Idempotent Analysis and Its Applications, Kluwer Acad. Publ.,
Dordrecht, 1998.
9. J.D. Lawson, Idempotent analysis and continuous semilattices, Theor. Comp. Sci., 316 (2004), 75–87.
10. W. Longstaff, Strongly reflexive lattices, Journal of the London Mathematical Society, 2 (1975), 491–498.
11. S. Mac Lane, Categories for the Working Mathematician, 2nd ed. Springer, New York, 1998.
12. O.R. Nykyforchyn, Capacities with values in compact Hausdorff lattices, Applied Categorical Structures,
15 (2008), ¹3, 243–257.
13. O. Nykyforchyn, Adjoints and monads related to compact lattices and compact Lawson idempotent semimodules,
Order (14 March 2011), P. 1–21, DOI 10.1007/s11083-011-9208-2.
14. O. Nykyforchyn, O. Mykytsey, Conjugate measures on semilattices, Visnyk LNU, Ser. mech.-mat, 72
(2010), 88–99.
15. O. Nykyforchyn, O. Mykytsey, L-idempotent linear operators between predicate semimodules, dual pairs
and conjugate operator, Mathematical Bulletin of the Shevchenko Scientific Society, 8 (2011), 299–314.
16. O.R. Nykyforchyn, D. Repov.s, Idempotent convexity and algebras for the capacity monad and its
submonads, Applied Categorical Structures, 19 (2011), ¹4, 709–727.
17. O.R. Nykyforchyn, D. Repov.s, L-fuzzy strongest postcondition predicate transformers as L-idempotent
linear or affine operators between semimodules of monotonic predicates, preprint, 2011.
18. K. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Mathematics Series 234,
Longman Scientific & Technical, Wiley, Essex, England, New York, 1990.
19. I. Singer, V. Nitica, Contributions to max-min convex geometry. I: Segments, Lin. Alg. Appl., 428 (2008),
1439–1459.
20. I. Singer, V. Nitica, Contributions to max-min convex geometry. I: Semispaces and convex sets, Lin. Alg.
Appl., 428 (2008), 2085–2115.
|