Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point

Author V. Kadets
vova1kadets@yahoo.com
Kharkiv National University

Abstract We present a refinement of the recent Borodin's example of a finite set without a Steiner point. Namely, we show that under a suitable renorming such an example exists in every nonreflexive Banach space.
Keywords Steiner point of a finite set; Banach space; equivalent norm
Reference 1. Borodin P.A., An example of nonexistence of a Steiner point in a Banach space, Mat. Zametki, 87 (2010), ¹4, 514–518. (in Russian) English transl. in Math. Notes 87 (2010), ¹4, 485–488.

2. Kadets V.M., A course in functional analysis, Karazin Kharkiv National University, 2006, 607p. (in Russian)

3. Lindenstrauss J., Tzafriri L., Classical Banach spaces. I. Sequence spaces, Springer-Verlag, Berlin-New York, 1977, 188p.

Pages 197-200
Volume 36
Issue 2
Year 2011
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML