Operator analogues of Kummers test (in Ukrainian)

Author V. Yu. Slyusarchuk
V.Ye.Slyusarchuk@NUWM.rv.ua


Abstract We obtain the conditions for convergence of operator series.
Keywords operator series; Kummers test
Reference 1. Fichtengolz G.M. Course of the differential and integral calculus, V.2. Moskow: Nauka, 1966. 800p. (in Russian)

2. Slyusarchuk V.Yu. General theorems of converging numerical series. Rivne: Rivne State Technical University Publishing House, 2001. 240p. (in Ukrainian)

3. Krasnoselskii M.A., Lifshic E A., Sobolev A.V. Positive linear systems: method of positive operators. Moskow: Nauka, 1985. 256p. (in Russian)

4. Lyusternik L.A., Sobolev V.I. Elements of functional analysis. Moskow: Nauka, 1965. 520 p. (in Russian)

5. Slyusarchuk V.Yu. Conditions of converging operator series $\sum_{n=1}^{+\infty}n^{-A}$// Nauk. Visn. Chernivetskogo Univ. Mat. 2009. 485. P. 113117. (in Ukrainian)

6. Slyusarchuk V.Ye. Operator analogue of DAlemberts test// Mathematics today 09. Kiev: Osvita Ukraine, 2009. 15. P. 101115. (in Russian)

7. Slyusarchuk V.Yu. Operator analogue of Cauchys test// Mat. Stud. 2010. V.33, 1. P. 97100. (in Ukrainian)

8. Slyusarchuk V.Yu. Operator analogue of Bertrands test// Mat. Stud. 2011. V.35, 2. P. 181195. (in Ukrainian)

Pages 188-196
Volume 36
Issue 2
Year 2011
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML