Operator analogues of Kummer’s test (in Ukrainian)

Author V. Yu. Slyusarchuk
V.Ye.Slyusarchuk@NUWM.rv.ua
Íàö³îíàëüíèé óí³âåðñèòåò âîäíîãî ãîñïîäàðñòâà òà ïðèðîäîêîðèñòóâàííÿ

Abstract We obtain the conditions for convergence of operator series.
Keywords operator series; Kummer’s test
Reference 1. Fichtengolz G.M. Course of the differential and integral calculus, V.2. – Moskow: Nauka, 1966. – 800p. (in Russian)

2. Slyusarchuk V.Yu. General theorems of converging numerical series. – Rivne: Rivne State Technical University Publishing House, 2001. – 240p. (in Ukrainian)

3. Krasnosel’skii M.A., Lifshic E A., Sobolev A.V. Positive linear systems: method of positive operators. – Moskow: Nauka, 1985. – 256p. (in Russian)

4. Lyusternik L.A., Sobolev V.I. Elements of functional analysis. – Moskow: Nauka, 1965. – 520 p. (in Russian)

5. Slyusarchuk V.Yu. Conditions of converging operator series $\sum_{n=1}^{+\infty}n^{-A}$// Nauk. Visn. Chernivets’kogo Univ. Mat. – 2009. – ¹485. – P. 113–117. (in Ukrainian)

6. Slyusarchuk V.Ye. Operator analogue of D’Alembert’s test// Mathematics today ’09. – Kiev: Osvita Ukraine, 2009. – ¹15. – P. 101–115. (in Russian)

7. Slyusarchuk V.Yu. Operator analogue of Cauchy’s test// Mat. Stud. – 2010. – V.33, ¹1. – P. 97–100. (in Ukrainian)

8. Slyusarchuk V.Yu. Operator analogue of Bertrand’s test// Mat. Stud. – 2011. – V.35, ¹2. – P. 181–195. (in Ukrainian)

Pages 188-196
Volume 36
Issue 2
Year 2011
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML