Processing math: 68%

Maximum modulus of entire functions of two variables and arguments of coefficients of double power series

Author O. B. Skaskiv, A. O. Kuryliak
matstud@franko.lviv.ua, kurylyak88@gmail.com
Lviv Ivan Franko National University

Abstract Let L be the class of positive continuous functions on (,+) and let L2+ be the class of positive continuous increasing with respect to each variable functions γ in R2 such that γ(r1,r2)+ as r1+r2+. We prove the following} statement: for all entire functions of the form f(z1,z2)=+n+m=0anmzn1zm2 such that |anm|exp{(n+m)ψ(n,m)} for n+mk0(f) and functions f(z1,1),f(1,z2) are transcendent, ψL2+, the inequality Mf(r1,r2)=O(Mf(r1,r2)h(lnMf(r1,r2))), hL, r=min holds where M_f(r_1,r_2)=\max\{|f(z_1,z_2)|\colon |z_1|=r_1,|z_2|=r_2\},\ \mathfrak{M}_f(r_1,r_2)=\sum_{n+m=0}^{+\infty}|a_{nm}|\times \times r_1^nr_2^m, if and only if \begin{equation*} (\forall\gamma\in\mathcal{L}_+^2)\colon\ \sqrt{r_1r_2}=O\big(h(\gamma(r_1,r_2)\psi(r_1,r_2))\big), \ r^{\vee}\to+\infty. \end{equation*}
Keywords entire functions; power series; maximum modulus
Reference 1. Brinkmeier H. Uber das Mass der Bestimmtheit des Wachstum einer ganzen transzendenten Funktion durch die absoluten Betrage der Koeffizienten ihrer Potenzreihe// Math. Ann. - 1926. - B.96, №1. - S. 108-118.

2. Zelisko M.M., Sheremeta M.M. On influence of coefficients arguments for Dirichlet series on its growth// Mat. Stud. - 2006. - V.26, №1. - P. 81-85. (in Ukrainian)

3. Filevych P.V. Wiman-Valiron type inequalities for entire and random entire functions of finite logarithmic order// Sib. Mat. Zh. - 2001. - V.42, №3. - P. 683-692. (in Russian) English transl. in Sib. Math. J. 2001, V.42, №3, 579-586.

4. Filevych P.V. On influence of the arguments of coefficients of a power series expansion of an entire function on the growth of the maximum of its modulus// Sib. Mat. Zh. - 2003. - V.44, №3. - P. 674-685. (in Russian) English transl. in Sib. Math. J. 2003, V.44, ‡‚3, 529.538.

5. Kahane J.-P. SЃLeries de Fourier absolument convergentes. - Ergebnisse der Mathematik und ihrer Grenzgebiete. Bd. 50. - Berlin-Heidelberg-New York: Springer Verlag, 1970.

Pages 162-175
Volume 36
Issue 2
Year 2011
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML