|
An analytic continuation of random analytic functions (in Ukrainian) |
Author |
P. V. Filevych
filevych@mail.ru
Львiвський нацiональний унiверситет ветеринарної
медицини та бiотехнологiй iм. С. З. Ґжицького
|
Abstract |
Let (ηn(ω)) be a sequence of independent random variables such that ηn(ω) takes the values −1 and 1 with the probabilities pn and 1−pn, respectively. Put qn=min. Then, for each complex sequence (a_n) such that \varlimsup\limits_{n\to\infty}\root{n}\of{|a_n|}=1, the circle \{z\in\mathbb{C}\colon |z|=1\} is the natural boundary for the function f_\omega(z)=\sum_{n=0}^\infty a_n\eta_n(\omega)z^n almost surely if and only if the condition \sum_{k=0}^\infty q_{n_k}=+\infty holds for every increasing sequence (n_k) of nonnegative integers such that \varliminf\limits_{k\to\infty}\frac{n_k}k<+\infty. |
Keywords |
random analytic function; singular point; analytic continuation; natural boundary |
Reference |
1. Fabry E. Sur les points singuliers d'une fonction donnee par son developpement de Taylor// Ann. ec.
norm. sup. Paris (3). - 1896. - V.13. - P. 367-399.
2. Polya G. On converse gap theorems// Trans. Amer. Math. Soc. - 1942. - V.52. - P. 65-71.
3. Steinhaus H. Uber die Wahrscheinlichkeit dafur, dass der Konvergenzreis einer Potenzreihe ihre naturliche
Grence ist// Math. Z. - 1929. - V.31. - P. 408-416.
4. Paley R.E.A.C., Zygmund A. A note on analytic functions in the unit circle// Proc. Cambridge Phil.
Soc. - 1932. - V.28. - P. 266-272.
5. Kahane J.-P. Some random series of functions. Sec. ed. - Cambridge stud. in adv. math. 5. - Cambridge
Univ. Press, 1985. - 308 p.
6. Ryll-Nardzewski C.D. Blackwell's conjecture on power series with random coefficients// Stud. Math. -
1953. - V.13. - P. 30-36.
7. Filevych P.V. On the Phragmen-Lindelof Indicator for Random Entire Functions// Ukrainian Mathematical
Journal. - 2000. - V.52, №10. - P. 1431-1434. (in Ukrainan)
8. Filevych P.V. The indicator of entire functions with rapidly oscillating coefficients// Mat. Stud. - 2011. -
V.35, №2. - P. 142-148.
|
Pages |
128-132 |
Volume |
36 |
Issue |
2 |
Year |
2011 |
Journal |
Matematychni Studii |
Full text of paper |
PDF |
Table of content of issue |
HTML |