On some modules over group rings of locally soluble groups with rank restrictions on subgroups

Author O. Yu. Dashkova
odashkova@yandex.ru
Dnipropetrovsk National University

Abstract The author studies an $\bf R$$G$-module $A$ such that $\bf R$ is an integral domain, $G$ is a locally soluble group of infinite section $p$-rank (or infinite 0-rank), $C_{G}(A)=1$, $A/C_{A}(G)$ is not a noetherian $\bf R$-module, and for every proper subgroup $H$ of infinite section $p$-rank (or infinite 0-rank respectively), the quotient module $A/C_{A}(H)$ is a noetherian $\bf R$-module. It is proved that under the above conditions, $G$ is a soluble group. Some properties of soluble groups of this type are obtained.
Keywords noetherian $R$-module; locally soluble group; group ring
Reference 1. M.R. Dixon, M.J. Evans, L.A. Kurdachenko, Linear groups with the minimal condition on subgroups of infinite central dimension, J. Algebra. 277 (2004), 172–186.

2. O.Yu. Dashkova, M.R. Dixon, L.A. Kurdachenko, Linear groups with rank restrictions on the subgroups of infinite central dimension, J. Pure Appl. Algebra. 208 (2007), 785–795.

3. L.A. Kurdachenko, On groups with minimax classes of conjugate elements, Infinite groups and adjoining algebraic structures, Academy of Sciences of Ukraine, Institute of Mathematics. – Kiev, 1993, 160–177.

4. O.Yu. Dashkova, On modules over group rings of locally soluble groups with rank restrictions on some systems of subgroups, Asian-Eur. J. Math. 3 (2010), 45–55.

5. O.Yu. Dashkova, On the application of the rank restrictions for the investigation of modules over integer group rings of soluble groups, Proceedings of the Eighth International School-Conference dedicated to the 75th anniversary of V.A.Belonogov “Group theory and its applications”. – Nalchik, 2010, 77–86.

6. A.I. Mal’cev, On groups of finite rank, Mat. Sb. 22 (64):2 (1948), 351–352.

7. B.A.F. Wehrfritz, Infinite Linear Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer- Verlag, New York, Heidelberg, Berlin, 1973.

8. O.H. Kegel, B.A.F. Wehrfritz, Locally Finite Groups, North-Holland Mathematical Library, North- Holland, Amsterdam, London, 1973.

9. S. Franciosi, F. De Giovanni, L.A. Kurdachenko, The Shur property and groups with uniform conjugacy classes, J. Algebra. 174 (1995), 823–847.

10. D.J.R. Robinson, Finiteness Conditions and Generalized Soluble Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, Heidelberg, New York, V.1,2, 1972.

11. R. Baer, H. Heineken, Radical groups of finite abelian subgroup rank, Illinois J. Math. 16 (1972), 533–580.

Pages 119-127
Volume 36
Issue 2
Year 2011
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML