|
The Nevanlinna characteristic and maximum modulus of
entire functions of finite order with random zeros (in Ukrainian) |
Author |
Yu. B. Zakharko, P. V. Filevych
Ivan Franko national University of L’viv
|
Abstract |
Let $(r_n)$ be a positive nondecreasing sequence of finite genus tending to $+\infty$, and $(\eta_n(\omega))$ be a sequence of independent random variables such that $\eta_n(\omega)$ are uniformly distributed on the circles $|z|=r_n$. Then for almost all $\omega$ the following assertion holds: if $f$ is an entire function of finite order with zeros at the points $\eta_n(\omega)$ and only at them, then for every $\varepsilon>0$ we have $\ln M_f(r)=o(T_f^{3/2}(r)\ln^{3+\varepsilon} T_f(r))$, $r\to+\infty$, where $M_f(r)$ is the maximum modulus and $T_f(r)$ is the Nevanlinna characteristic of the function $f$. |
Keywords |
entire function of finite order; Nevanlinna characteristic; independent random variables |
Reference |
1. Гольдберг А.А., Островский И.В. Распределение значений мероморфных функций. - М.: Наука, 1970. - 590 с.
2. Щерба А.И. О характеристиках роста целых функций// Теория функций, функ. анализ и их прилож. - 1985. - T.44. - С. 136-141.
3. Miles J. On the growth of meromorphic functions with radially distributed zeros and poles// Pacific J.
Math. – 1986. – V.122, №1. – P. 147–167.
4. Хейман У. Мероморфные функции. - М.: Мир, 1966. - 288 с.
5. Кондратюк А.А. Ряды Фурье и мероморфные функции. - Львов: Вища школа, 1988. - 196 с.
6. Offord A.C. The distribution of the value of a random function in the unit disk// Studia Math. – 1972. –
V.41. – P. 71–106.
7. Miles J. On entire functions of infinite order with radially distributed zeros// Pacific J. Math. – 1979. –
V.81, №1. – P. 131–157.
|
Pages |
40-50 |
Volume |
36 |
Issue |
1 |
Year |
2011 |
Journal |
Matematychni Studii |
Full text of paper |
PDF |
Table of content of issue |
HTML |