The Nevanlinna characteristic and maximum modulus of entire functions of finite order with random zeros (in Ukrainian)

Author Yu. B. Zakharko, P. V. Filevych

Ivan Franko national University of L’viv

Abstract Let $(r_n)$ be a positive nondecreasing sequence of finite genus tending to $+\infty$, and $(\eta_n(\omega))$ be a sequence of independent random variables such that $\eta_n(\omega)$ are uniformly distributed on the circles $|z|=r_n$. Then for almost all $\omega$ the following assertion holds: if $f$ is an entire function of finite order with zeros at the points $\eta_n(\omega)$ and only at them, then for every $\varepsilon>0$ we have $\ln M_f(r)=o(T_f^{3/2}(r)\ln^{3+\varepsilon} T_f(r))$, $r\to+\infty$, where $M_f(r)$ is the maximum modulus and $T_f(r)$ is the Nevanlinna characteristic of the function $f$.
Keywords entire function of finite order; Nevanlinna characteristic; independent random variables
Reference 1. Гольдберг А.А., Островский И.В. Распределение значений мероморфных функций. - М.: Наука, 1970. - 590 с.

2. Щерба А.И. О характеристиках роста целых функций// Теория функций, функ. анализ и их прилож. - 1985. - T.44. - С. 136-141.

3. Miles J. On the growth of meromorphic functions with radially distributed zeros and poles// Pacific J. Math. – 1986. – V.122, №1. – P. 147–167.

4. Хейман У. Мероморфные функции. - М.: Мир, 1966. - 288 с.

5. Кондратюк А.А. Ряды Фурье и мероморфные функции. - Львов: Вища школа, 1988. - 196 с.

6. Offord A.C. The distribution of the value of a random function in the unit disk// Studia Math. – 1972. – V.41. – P. 71–106.

7. Miles J. On entire functions of infinite order with radially distributed zeros// Pacific J. Math. – 1979. – V.81, №1. – P. 131–157.

Pages 40-50
Volume 36
Issue 1
Year 2011
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML