|
|
Diadic Baire space and continuity of weakly quasi-continuous maps(in Ukrainian) |
| Author |
O. V. Maslyuchenko
ovmasl@gmail.com
Yuriy Fedkovych Chernivtsi National University
|
| Abstract |
We introduce some diadic analogue of the Choquet game and
a class of diadic Baire spaces which is a subclass of Baire
spaces and is wider then the class Choquet spaces. We prove that
for any diadic Baire space $X$, a Banach space $Y$, a countable
Asplund$^*$ norming set $E\subseteq Y^*$ and for every map
$\varphi\colon X\to Y$, such that $z\varphi$ is quasi-continuous for any
$z\in E$, the discontinuity point set $C(\varphi)$ is residual. |
| Keywords |
Choquet game; diadic Baire space |
| DOI |
doi:10.30970/ms.36.1.107-112
|
| Reference |
1. Baire R. Sur les fonctions de variables reelles// Annal Mat. Pura Appl. – 1899. – V.3, №3. – P. 1–123.
2. Namioka I. Separate continuity and joint continuity// Pacif. J. Math. – 1974. – V.51, №2. – P. 515–531.
3. Stegall Ch. Generalization of a theorem of Namioka// Proc. Amer. Math. Soc. – 1988. – V.102, №3. –
P. 559–564.
4. Maslyuchenko O.V. Joint continuity of KC-functions// Mat. Stud. – 2002. – V.17, №1. – P. 75–80. (in
Ukrainian)
5. Saint-Raymond J. Jeux topologiques et espaces de Namioka// Proc. Amer. Math. Soc. – 1984. – V.87, №4.
– P. 409–504.
6. Энгелькинг Р. Общая топология. - Москва: Мир, 1986. - 752с.
7. Архангельский А.В. Топологические пространства функций. - М.:
Изд. Московского ун-та, 1989. - 222с.
|
| Pages |
107-112 |
| Volume |
36 |
| Issue |
1 |
| Year |
2011 |
Journal |
Matematychni Studii |
| Full text of paper |
PDF |
| Table of content of issue |
HTML |