Reference |
1. Edelstein M., Thompson A.C. Some results on nearest points and support properties of convex sets in c0//
Pacific J. Math. – 1972. – V.40. – P. 553–560.
2. Bishop E., Phelps R.R. A proof that every Banach space is subreflexive// Bull. Amer. Math. Soc. – 1961.
– V.67. – P. 97–98.
3. Bishop E., Phelps R.R. Support functionals of convex sets// Proc.Simposia in Pure Math. (Convexity)
Amer. Math. Soc. – 1963. – V.7. – P. 27–35.
4. Klee V. Remarks on nearest points in normed linear spaces// Proc. Colloquium on Convexity, Copenhagen.
– 1965. – P. 168–176.
5. Cobzas S. Antiproximinal sets in the spaces $c_0$ and $c$// Math. Notes. – 1975. – V.17. – P. 449–457.
6. Fonf V.P. On antiproximinal sets in spaces of continuous functions on compacta// Mat. Zametki. – 1983.
– V.33, ¹4. – P. 549–558. (in Russian)
7. Balaganskii V.S. Antiproximinal sets in the space of continuous functions// Math. Notes. – 1996. – V.60,
¹5. – P. 485–494.
8. Kantorovich L.V., Akilov G.P. Functional analysis. – Moscow: Nauka, 1984. – 752p. (in Russian)
9. Schaefer H. Topological vector spaces. – Moscow: Mir, 1971. – 359p. (in Russian)
10. Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. – Moscow:
Nauka, 1976. – 544p. (in Russian)
11. Natanson I.P. Theory of functions of real variable. – Moscow: Nauka, 1974. – 480p. (in Russian)
12. Martinez-Abejon A., Odell E., Popov M.M. Some open problems on the classical function space $L_1$//
Mat. Stud. – 2005. – V.24, ¹2. – P. 173–191.
|