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We introduce a notion of almost antiproximinality of sets in the space L; which is a weaken-
ing of the notion of antiproximinality. Also we investigate properties of almost antiproximinal
sets and establish a method of construction of almost antiproximinal sets.
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empanemese Ly // Mar. Cryail. — 2011. — T.35, Ne2. — C.172-180.

B OIPOCTPaHCTBE Ll BBOOUTCHA IIOHATHUE IMOYTH aHTHUIIPOKCUMHHAJIBHOCTH MHOXKECTB, KOTO-
poe dBJIAETCA ociabJieHneM IIOHSITHSI AHTUIIPOKCUMUHAJIBHOCTH. I/ICCJ'Ie,D;y}OTCH CBOICTBA MTOYTU
AHTUIIPOKCUMHUHAJIbHBIX MHO2KECTB U YCTaHaBJIUBaCTCA METO/] IIOCTPOCHUA IIOITU aHTUIIPOKCH-
MHWHaJIbHBIX MHOZKECTB.

1. Introduction. By d(z, M) we denote the distance inf{||z — y||: y € M} between an
element x of a normed space X and a non-empty set M C X. An element y € M is called
the nearest point to x if ||z — y|| = d(x, M). The set of all nearest points to a point z in a
set M is denoted by Py(z).

A set M is called an antiproziminal (AP) set if Py(x) = & for each x € X \ M.

Let X* be the Banach space conjugate to X. A functional f € X* attains supremum on
M C X if there exists an element x € M such that f(z) = sup f(M). By 3(M) we denote
the set of all functionals which attain supremum on M, i.e.

EX(M)={feX":Fxe M| f(x)=sup f(M)}.

Let X be anormed space, xg € X \{0}. A functional fy, € X* is called a support functional
in zo if || fol] = 1 and fo(x) = ||@o]|-

M. Edelstein and A. Thompson in [1| showed that a bounded closed convex subset A of
Banach space X is AP if and only if each non-zero support functional of the set A does not
attain maximum on the closed unit ball B of X, i.e. X(A4) N X(B) = {0}.

In 1961 E. Bishop and P. Phelps proved that each Banach space is subreflexive, i.e. the
set of functionals which attain their maximum at unit ball is dense in this space [2], and in
1963 they generalized this result to the case of convex sets (see [3]).

Plenty of mathematicians have worked on the problem of the existence of non-empty
closed convex bounded AP-sets in Banach spaces. In particular, it is proved in [1]-[7] that
such sets exist in the spaces ¢, ¢, Lo, C(X) (with some especial conditions on X).

Besides, V. Klee showed in [4] that a Banach space X contains a non-empty closed convex
(not obligatory bounded) AP-set if and only if X is not reflexive.
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In connection with these facts, the following question on the existence of non-empty
closed convex bounded AP-sets in L; was naturally risen by professor V. Fonf (see [12]).

Question. Do there exist non-empty closed convex bounded AP-sets in Li?

Note that the example of radially bounded (i.e. bounded in each direction) AP-set M in
L, was constructed in |7], but this set M is not bounded.

In this paper we introduce some weakening of the notion of antiproximinality which we
call almost antiproximinality, and investigate properties of closed convex bounded almost

AP-sets in L;.

2. Definition of almost AP-set in L;, examples. By L; and L., we denote the spaces
L4]0,1] and L0, 1] respectively. The space L., we identify with the space L] and denote
y(r) = (x,y) = foly(t)x(t)d,u. Furthermore, for a set A C Ly, the sets {y € Loo: (z,y) <
1 Vo € A} and {y € Loo: |(z,y)| < 1 Va € A} are called the polar and the absolute polar
of the set A respectively. The polar and the absolute polar of a set B C L, are introduced
similarly.

It is easily seen that the set 3(B) of all support functionals at the unit ball B of L; consists
of all y € Ly, such that pu({t € [0,1]: |y(¢)| = ||y||}) > 0. The most obvious examples of
non-zero functionals y € 3(B) are so-called signs, i.e. such y € L, that |y| = x,., where x..
is the characteristic function of a measurable set 7' C [0, 1] having positive measure.

According to the characterization of AP-sets obtained by M. Edelstein and A. Thompson,
the next notion is a natural weakening of the conception of antiproximinality in L;.

Definition 1. A set A C L, is called almost antiproximinal (almost AP) if for each set
T C [0,1] of positive measure any functional y € L, such that |y| = x, does not attain
supremum on A.

Suppose that a set A C L; has the following property: = € A if and only if |z| € A. Then
almost antiproximinality of A is equivalent to the fact that y,. ¢ 3(A) for each measurable
set T' C [0, 1] having positive measure. (Indeed, if a sign attains supremum on a set 7" C [0, 1]
at some point « € A, then x, attains supremum at |z| € A).

We denote A, = {x € L;: fol |zy|dp < 1} for any function y € L.

Definition 2. A measurable function y: [0,1] — R is called rearrange monotone if for each
a € R the set {t € [0,1]: y(t) = o} has measure zero.

Proposition 1. Let y € Ly be rearrange monotone. Then the set M = A, is an almost
AP-set, but is not an AP-set.

Proof. Let T'C [0,1] and p(7") > 0. Denote m = sup inf |y(t)].
w(F)=0 teT\F

We will prove that oo = sup,¢,, fol || x,dp > %
| < m+ e} has non-zero measure. Consider the

T
Fixe > 0. Theset S ={t € T:m < |y(t)

. _ 1 .
function = = 7= - X Since
1 1 1
|zyldp < —(m+6)/ Xsdp =1,
/0 (m +&)u(S) 0o 7
one has that © € M. So, a > fol xdy = ﬁ Tending € to zero, we obtain that a > %, in

particular o = +o0 if m = 0.
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It remains to show that fol z|x,dp < & for each & € M (so it will be proved that
Xr & (M),

Fix v € M and put 71 = {t € T |z(t)| > 0}. If u(77) = 0 then fol z|x,dp =0 < =
Suppose now p(77) > 0. Since the set {t € [0,1]: |y(t)| = m} has zero measure, without loss
of generality we can assume that |y(¢)] > m for each t € T;. Then m|x(t)| < |z(t)y(t)| for
each t € T} and

1 1
m/ |x|deu=m/ |z |Xdp </ |wy|dp S/ |[wyldp < 1.
0 T T 0

So, fol |z|x,dp < & and M is an almost AP-set.

Now we will prove that M is not an AP-set. Assume a = essinf |y|, ¢ = esssup |y| and
b = %€, Since y is rearrange monotone, a < ¢ and the sets S = {t € [0,1]: |y(t)| € (a,b)}
and T' = {t € [0,1]: |y(¢)| € (b, c)} have measure greater than zero.

Consider the functions yo: [0,1] — R and zo: [0,1] - R

ly(®)l, tes, : e
Yo(t) = ¢ b, teT, xo(t) = {(I)y(t)lu(s)’ , S’
0, t¢TUS, ’ ¢ 5

Since |yo| < |y|, we have that fol xyodp < 1 for each z € A.

On the other hand, fol \zoyldp = [ |zoyldp = 1 = fol |zoyoldu. So yo € B(M) NX(B)
which means that M is not an AP-set. O

Proposition 2. Intersection of two almost AP-sets in L; need not be an AP-set.

Proof. Let y1(t) = 141t, yo(t) =2 — 1,

1 1
Alz{xEle / ]x\yld,ugl}, AQ:{:L’ELl: / ]m\yzdugl}
0 0

and A = A; N A,. By Proposition 1, the sets A; and Ay are almost AP-sets.
Consider the functions yo = x,,, and ¢ = %X[ € A. Note that yy = %(yl + y2). Now
for each x € A we have

1 1 1 1 2 1
/ zyodp = 5( / zyrdp + / xyzdu)é 3= / ToYod .
0 0 0 0

Thus, yo € X(A). O

0,1] 0,1]

A set A of measurable functions on [0, 1] is called solid if for any measurable functions
x1 and x5 the condition |z1| < |z3] € A implies that x; € A.

Proposition 3. Let M C L; be a non-empty closed absolute convex bounded solid set and
B =X(M)n Me°n LY, where M° is the absolute polar of the set M. Then M = NyepA,.

Proof. Note that the absolute polar M° and the set (M) are solid and A, = A
ly1] = |ya|- So, NyepAy = Nyec Ay, where C' = X(M) N M.

According to [3], the set (M) is norm dense in L.,. We show that C' is dense in M.
Assume to the contrary that there exist ¢ > 0, y € M°, (yn)221, Yn € 2(M), (2,)52,
x, € M, such that nhg)lo Yo =y and |y, (z,)| > 1+¢ for any n € N. Using boundedness of M,

if

Y2

we choose n € N such that ||(y, —y)(2n)|| < 5. Then |y(x,)| > 14 5, which is impossible.
Moreover, C' is solid, so NyepA, = NyecAy = C° = (C°)° = M*° = M. O
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In connection with Propositions 2 and 3 the following question naturally arises.
Question. For which sets B C L, the set M = NycpA, is an almost AP-set?

3. Positive polars in L; and L., and their properties. Let
X =L7 ={x € Ly: x(t) > 0 almost everywhere (a.e.) on [0, 1]}

and Y = {y € LT : y(t) > 0 a.e. on [0, 1]}. Denote by o(X,Y") the weakest topology on X
such that for each y € Y the function f,: X = R, f,(z) = fol xydpu, is continuous. Similarly,
by (Y, X) we denote the weakest topology on Y such that for each x € X the function

7Y = R, f*(y) = fol xydp, is continuous. We will shortly denote by o the topologies
o(X,Y) and o(Y, X).

Proposition 4. The topology o coincides with the restriction of the weak topology w of Ly
on X.

Proof. Obviously, the restriction of w on X is stronger than o. So, it remains to prove that for
any o € X and weak neighborhood U of the point z( in L; the set UNX is a o-neighborhood
of the point o in X. It is sufficient to consider the case U = {z € L;: [(z — zo,y)| < 1},
where y € L is fixed.

We denote A = {t € [0,1]: y(t) > 0} and B = {t € [0,1]: y(t) < 0}. Put y; = yx,,
Yo = —yxp U1 ={z € X: [z —zo,y1)| < 53} and Us = {z € X: [(x — zo,30)| < 3}. It is
clear that y1,ys € Y, Uy, Uy are o-neighborhoods of zy € X, moreover Uy NU; C U N X. So,
U N X is a o-neighborhood of the point z. O]

The following proposition can be proved similarly.

Proposition 5. Topology o coincides with the restriction of the weak* topology w* of L
onY.

Given non-empty sets A C X and B C Y, the sets
T(A)={yeY: (z,y) <1Vre A} and n(B) ={z € X: (z,y) <1Vy € B}

are called the positive polars of the sets A and B respectively.
For any y1,y2 € Y we denote [y1,y2] ={y € Y:y1 <y <y}

Proposition 6. Let A C X be a neighborhood of zero in X . Then 7(A) is o-compact in'Y,
in particular, for each y € Y the set [0, y] is o-compact.

Proof. Note that the set A = {z € Ly: |z| € A} is a neighborhood of zero in L;. Let
B = m(A) and B = A° be the absolute polar of A with respect to the duality (L;, Lso) -
Now we show that y € B if and only if |y| € B.
Let y € B and # € A be arbitrary elements. Consider the element 2/ € Ly, which is
defined in the following way:

i) — {x<t>, y(t) 2 0.

—x(t), y(t) <O.

Obviously, ' € A and 2/(t)y(t) = z(t)|y(t)| on [0, 1]. Then ‘folx]y|d,u’ = ‘fol x’yd,u‘ < 1. So,
ly| € B.
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Conversely, let y € Lo, be such that |y| € B and let # € A be an arbitrary element. Then
|z| < 2’ and ’fol xydu’ < ’fol \:UHy\du’ < 1. Hence, y € B if and only if |y| € B, in particular,

B = BNY. According to the Alaouglu-Burbaki theorem [8, p.117], the set B is w*-compact.
Now using Proposition 3, the equality B = BNY and w*-closeness of Y in L., we obtain
that B is o-compact in Y. O

Proposition 7. For any non-empty set B C'Y the positive bipolar w(m(B)) is the o-closed
convex hull of the set Upeg|0, b].
Proof. Denote D = co(Uyep[0,b]) and C = D°. Obviously, C' C 7(n(B)). Besides, B C D,
therefore m(m(B)) C m(mw(D)). Now it is sufficient to prove that 7w(7(D)) = C.

We set D° = {z € Ly: (z,y) <1 Vy € D}. Note that for any y € D and a measurable
set A C[0,1] we havey-x, € D.

For any = € Ly denote 2™ =z - x,, where A = {t € [0,1]: z(¢t) > 0}. Now we show that
x € D° if and only if 27 € D° ie. 27 € 7(w(D)). Note that fol xydp < fol xtydp for each
y € Y, therefore x € D° if T € D°.

Let x € D°,y € D and A = {t € [0,1]: z(t) > 0}. Then y - x, € D and folirydu =
fol zyX ,dp < 1. Thus, x+ € D°.

Consider the set D = {y € Ly: (z,y) <1 Vz € D°}. We prove that D = 7(w(D)).

First we will show that D C Y. Assume y € Lo, A = {t € [0,1]: y(t) < 0} and
1(A) > 0. Choose z € X such that {t € [0,1]: z(¢) > 0} C A and fol xydp < —1. Then
z=—x€D%as zt =0 € (D), and fol zydp = — fol xydp > 1. Thus, y ¢ D*.

Since for each y € Y, we have fol rydp < fol xtydp,

1 1
DOO:{er:/xydugw:eDO}:{er:/x+ydug1v:ceD0}:
0 0

— {y eY: /01 rydp < 1Vz € W(D)}: m(m(D)).

Now by the bipolar theorem [9, p.160] and by Proposition 5 we have 7(n(D)) = D =
D¥ =D =C. -

Proposition 8. Let B = B, U By C Y, and let B be norm bounded. Then

co((J[0,8]) = co (co( L [0,8)) uco( | J [o,b})) :

beB beB; beB>

where closures are taken in the o-topology.

Proof. Denote A1 = co(Upep, [0,b]), Aa = co(Upep,[0,b]) and A = co(Upeg[0,b]). Obviously,
co(A; U Ay) C A

Now we show that A C co(A;UA,). Note that A C co(A; U Ay). Therefore, it is sufficient
to prove that the set co(A; U Ay) is closed.

By Proposition 7, we have A; = n(m(B;)) and Ay = 7(7(By)). Moreover, the norm
boundedness of the sets B; and By together with Proposition 6 imply that the sets Ay and
A, are o-compact.

Consider the following continuous mapping ¢: [0,1]> x Y2 = Y, o(\, 1, y1, y2) = A\y1 +
py2. The set S = {(\, i) € [0,1]>: X + pu = 1} is compact in [0, 1]%. Hence, the set co(A; U
Ay) = { Ay +pxy: 21 € A1y € Ay} = (S x A} X Ay) is compact as the continuous image
of a compact set. Then co(A; U Ay) is closed. O
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Proposition 9. Let measurable functions x, vy, z be such that y < z and fol rzdp < fol xydjs.
Then y = z a.e. at T = {t € [0,1]: z(t) > 0}.

4. Support functionals at X and Y. For each set A C X = L] by %(A) we denote the
set of all y € Y = L} such that max,ca(x,y) exists. By 3g(A) we denote the set of all
y € Y = LT such that max,ca(z,y) = 1, and by X,.x(A) denote the set of all maximal
elements of Xy(A). Given any set B C Y, by Xo(B) we denote the set of all z € X = L] such
that maxyep(z,y) = 1, and by X,,.x(B) denote the set of all maximal elements of ¥y(B).

Proposition 10. Let A C X be such that ¥y(A) is norm bounded in L. Then for each
y € Xo(A) there exists y' € Yyax(A) such that y < /.

Proof. Suppose the contrary. Then by the Levi theorem [10, p.299]|, we can construct a stri-
ctly increasing transfinite sequence (ye): & < wy of functions ye € ¥g(A), where w; is the
first uncountable ordinal. Then fol yedp < fol ypdp for 1 < € < n < wy and the transfinite
sequence of numbers a; = fol yedp is strictly increasing, which is impossible. O]

Proposition 11. Let M C Ly be a closed absolute convex bounded solid neighborhood of
zero, A= M N X and D = X,,,(A). Then M = NyepA,.

Proof. By Proposition 3, we have M = NyecA,, where C' = X(A)N7(A). Obviously, D C C.
Note that for each y € C' there exists y' € ¥g(A) such that y < y/. Since B = 3(A) C 7(A)
and A is neighborhood of zero in X, ¥(A) is norm bounded in L, and so, it is also norm
bounded in L;. Then by Proposition 10, for each y" € 3(A) there exists " € Xax(A) such
that ¢y’ < y”. Thus, for each y € C there exists y” € D such that y < y”, in particular,
Ay D) Ay//. Then M = ﬂyeCAy = ﬂyeDAy- ]

Proposition 12. Let aset A C X be such that ¥y(A) is a norm bounded non-empty set in L,
and all functions y € Y,c(A) are rearrange monotone. Then the set M = {x € L,: |z| € A}
is an almost AP-set.

Proof. Suppose the contrary. Then there exists a measurable set 7' C [0, 1] with u(7T) > 0

such that a = max Jp xdp exists. Note that o # 0. Indeed, if o = 0, then zy, = 0 for each
xe

x € A. Now for any y; € ¥¢(A) and C' > 0 we have y; + C'x,. € Xo(A), which contradicts
the boundedness of ¥y(A).

Since the set M is balanced, o > 0. Consider the function y, = éXT‘ Then yy € Y and
Egrg;;(:v,y@ = rileaj((x,yo) = 1. So, yp € Xo(A).

Then there exists xy € A such that (x¢,yo) = 1. By Proposition 10, there exists y; €
Ymax(A) such that yo < y;. Besides, (xg,y0) = (x0,71) = 1. By Proposition 9, yo = 3; on the
set S = {t €[0,1]: zo(t) > 0}. Now since (zg,yo) = 1, we obtain that u(S N7T) > 0. Hence,
yi(t) = é for each t € S NT, which contradicts the conditions of the proposition, because
Y1 € Lmax(A) is rearrange monotone. O

Theorem 1. Let B C Y, A = n(B) and the following conditions hold:

(i) the set B is norm bounded in Lq;

(ii) for each x € ¥o(m(A)) there exists ¢ > 0 such that the set B, = {y € B: (z,y) > 1—¢}
is finite and each y € co(B,) is rearrange monotone.

Then the set M = () A, is almost AP.

yeB
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Proof. We show that A satisfies the conditions of Proposition 12. Note that by (i), the set
B = n(A) = 7%(B) = co(Upe[0, b]) is norm bounded.

Let yo € Ymax(A) and z¢p € A be such that (g, yo) = 1. Obviously, y, € B = m(A) =
{y e Y: (z,y) <1 Vz e A}. Besides, since zy € A, one has that (x,y) < 1 = (xo,yo) for
any y € B. So g € Yo(B). Using condition (i), we choose € > 0 so that set B; = {y €
B: (zg,y) > 1 — ¢} is bounded and each y € co(B;) is rearrange monotone. Then we put
B, = B\ Bi.

Note that by the o-compactness of [0,y], finiteness of B; and Propositions 7 and 8 we

have that -
B= CO(U 0,0]) = co(co( U [0,5]) U co( U [0, b]))

beB be B beB2

Denote C = co(Upep, [0,b]) and Cy = co(Upep, [0, b]). Choose y; € C1,y2 € Cy, ay, as € 0, 1]
with a1 + ay = 1 such that yo = @1y1 + asy2. Remind that (xg,y) < 1 for any y € B and
(x0,y) < 1—¢ for each y € Cy. Now we obtain

1 = (z0,%0) = a1{xo, Y1) + (0, y2) < a1+ (1l —¢€) =1 — age.

So ap =0 and yo € C4, i.e. yo = Y. aplp, where o > 0 and > ap = 1, and y, € [0,b] for

bEB: bEB;
each b € B;.

We set y* = >, B, @b and show that yo = y*. Firstly observe that yo < y* as y, < b
for any b € B;. On the other hand, since (xg,y*) > (zo,y) = 1 and y* € 7(A), we obtain
(o, y*) = maxzea(z,y*) = 1. Hence, y* € Eg(A). Then yo € Ypnax(A) yields yo = y* =
Zbe B, b € co(B1). Therefore, gy is rearrange monotone, according to the choice of By.

Thus, A satisfies the conditions of Proposition 12, and M is an almost AP-set. n

Corollary 1. Let B C Y be a finite set such that all functions y € co(B) are rearrange
monotone. Then the set M = N,epA, is almost AP.

Proof. Denote A = n(B), D = m(w(B)). The set D satisfies the conditions of Theorem 1 as
Ymax(A) € co(B). O

Corollary 2. Let B be a finite collection of polynomials on [0, 1] having pairwise distinct
degrees > 1. Then the set M = NyepA, is almost AP.

The following example shows the existence of a countable set B such that N,cpA, is
almost AP.

Example. The set B = {2% + Z’—;,2 + cosnt,2 + sinnt,n € N,t € [—n, x|} satisfies the
conditions of Theorem 4.4 for the spaces X = L{ ([-7,n]) and Y™ = LT ([-m,7]), and the
set M = {x € Ly|—m,7]: |{x,y)| <1 Vy € B} is almost AP.

Indeed, the set B satisfies condition (i) by construction. We show that condition (ii)
holds.

Denote by = 21 + 2L, Choose z € ¥o(m(A)) and find & > 0 such that the set B, = {b €
B: (z,b) > 1 — ¢} is finite and p({t € [—m,7|: y(t) = a}) = 0 for any y € co(B,) and
a € R. First we consider the case when x = const = C' > 0 a. e. on [—7, 7. It is easy to
show that (z,b) = [ bxdu = 4nC for any b € B,b # by and (z,b) = [T _bozdu = 4,57C.
Since x € Xo(m(A)), one has that (z,by) = 4.57C < 1, and hence, C' < 1. Then (z,b) < §
for each b € B, b # by.
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Put ¢ = 3. Then {b € B: (x,b) > 1 —¢c} = {b € B: (x,b) > 2} = {bo}, i.e. the set E is
finite. Obv1ously, co(B;) = {bo} and pu({t € [—m,7]: by(t) = a}) = 0 for each a € R.

Now suppose x # const on [—m, 7| (up to sets of zero measure). Then the set {n €
N:a, = [T x(t)sinntdy # 0 or b, = [ _x(t)cosntdu # 0} is non-empty ([11, p.270]),
moreover lim a, = hm b, =0 (|11, p.260]).

n—o0

Denote o = sup{]an] |bn|: n € N}. Obviously, a > 0 and the sets Ny = {n € N: a,, > §},
Ny={neN: —a,> 5}, Ng={necN:b,>5}and Ny = {n € N: —b, > 5} are finite
because lim a, = lim b, = 0. Now we set B = {2 + cosnt: n € Ny} U {2 — cosnt: n €

n—oo n—oo

No} U {2+ sinnt: n € N3} U {2 —sinnt: n € Ny} U {by}. Note that B is finite. Besides,

1=sup [" bxdp >2 [T xdu+o and for each b € B\ B we have I brdp <2 [T xdu+§ <
beB

1 — 2. Putting ¢ = 2, we obtain that the set {b € B: (x,b) > [ bwdu — e} C B is finite.
Since Ny N Ny = N3 N Ny = @&, each function y € CO(B) is rearrange monotone. Thus,
condition (ii) of Theorem 1 holds.

Thus, by Theorem 1 the set M = {x € Ly: |x| € w(B)} is almost AP, moreover,
Yimax(A) € co(B).

Note that for the given examples of almost AP-sets M = NyepA, the condition
Ymax(A) C co(B) holds, where B is, at most, a countable set. The following theorem shows

that constructed in such a way sets are not AP-set.

Theorem 2. Let A C X be a closed bounded convex set, B C w(A), let m7(A) be a norm
bounded subset of Ly and let B be, at most, a countable set such that ¥, (A) C co(B).
Then the set M = {z € Ly: |z| € m(B)} is not AP.

Proof. We set By = B N Xpax(A) and show that 2. (A) C co(By).

Assume yp € Ypax(A). By the theorem conditions, there exist n € N, by, ...,b, € B and
A, ..., € (0,1] such that a; + ... + a,, = 1 and yo = a1by + ... + a,b,. Choose zy € A so
that (xg,yo) = 1. Since by, ...,b, € m(A), we have that (xo, b;) < 1 for 1 <i < n. Now we
show that (xg,b;) = 1 for 1 < i < n. Suppose, on the contrary, that (xo,b;) < 1 for some
1 < j < n. Since a; > 0, we obtain that

(70, Y0) ZO@ (o, b ZO@ =1,

which contradicts the choice of aq, ..., a,.

Besides, (z,b;) < 1 for each x € A. Then by,...,b, € ¥¢(A). Since ay,...,a, > 0 and
Yo = >y ;b € iax(A), we have that by,...,b, € Epax(A). Thus, by,...,b, € By and
Yo € co(By).

Observe that each functional y € By has the maximum value 1 on M. Thus, if ByNXy # O,
where Y, is the set of support functionals on unit ball, then M is not AP. It remains to
consider the case By N Yy = &. Let By = {y,: n € N}. Since b, ¢ %, for each n € N,
we can choose 8, > 0 so that u(T,) = p({t € [0,1]: yo(t) > |lynll — 6,}) < 7= and put
S =10,1]\ (U2, T,). Obviously, u(S) > 0 and C = {z|;: © € M} is a closed bounded
convex set in the Banach space Ly (5). By the Bishop-Phelps theorem [3], there exist functions
ug € C and vy € Loo(S) such that 1 = [ ugvodp = max J uvodye.

Consider the functions yy € Y and xy € X

@), tes. luo(t)], tes,
bo(t) = {0, tes, To(t) = {0, tes.



180 V. A. KHOLOMENYUK, V. V. MYKHAYLYUK

Note that 2o € A and yo € ¥(A). Since 7(A) is norm bounded in Lq, so is ¥y(A), and
by Proposition 10, there exist § € ¥,ax(A) such that yo < g. Thus, there exist g1, ..., J, € By

and aq, ..., > 0 such that > a; =1 and § = > oy7;.

-1 1
Let 73 = yx. Note that (xg,yx) = 1. Consider the function y* € L,

yr(t), t €[0,1]\ Ty,
el = 0k, t € T,

yr(t) =

which obviously belongs to 3. We have

1
./f%MZ/f%WZ/%%WZL
0 S S

On the other hand, for each x € M we have [(z,y*)| < (|z|,v*) < (|z|,yn) < 1. Thus,
y* € X(M)NXyand M is not AP-set. O
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