|
On non-separable components of hyperspaces with the Hausdorff metric |
Author |
R. Cauty
cauty@math.jussieu.fr
Universite Paris 6, Institut de mathematiques de Jussieu
|
Abstract |
Let $(X,d)$ be a connected non compact metric space. Suppose the metric
$d$ convex and such that every closed bounded subset of $X$ is compact. Let $\mathcal F(X)$ be
the space of nonvoid closed subsets of $X$ with the Hausdorff distance associated to $d$.
We prove that every component of $\mathcal F(X)$ which contains an unbounded closed subset is
homeomorphic to the Hilbert space $\ell^2(2^{\aleph_0})$. |
Keywords |
metric space; Hausdorff distance |
Reference |
1. Curtis D. Hyperspaces of noncompact metric spaces// Compositio Math. 1980. V.40. P. 139152.
2. Curtis D., Nguyen To Nhu. Hyperspaces of finite susets which are homeomorphic to $\aleph_0$-dimensional linear
metric spaces// Topology Appl. 1985. V.19. P. 251260.
3. Kubis W., Sakai K. Hausdorff hyperspaces of $\Bbb R^n$ and there dense subspaces// J. Math. Soc. Japan. 2008.
P. 193217.
4. Kurihara M., Sakai K. Yaguchi M., Hyperspaces with the Hausdorff metric and uniform ANRs// J. Math.
Soc. Japan. 2008. V.57. P. 523535.
5. Torunczyk H. Characterizing Hilbert space topology// Fund. Math. 1981. V.111. P. 247272.
6. Torunczyk H. A correction of two papers concening Hilbert manifolds// Fund. Marh. 1985. V.125.
P. 8993.
|
Pages |
91-105 |
Volume |
35 |
Issue |
1 |
Year |
2011 |
Journal |
Matematychni Studii |
Full text of paper |
PDF |
Table of content of issue |
HTML |