УДК 515.12

R. CAUTY

SUR LES COMPOSANTES NON SÉPARABLES DES HYPERESPACES AVEC LA DISTANCE DE HAUSDORFF

R. Cauty. On non-separable components of hyperspaces with the Hausdorff metric, Mat. Stud. **35** (2011), 91–105.

Let (X, d) be a connected non compact metric space. Suppose the metric d convex and such that every closed bounded subset of X is compact. Let $\mathcal{F}(X)$ be the space of nonvoid closed subsets of X with the Hausdorff distance associated to d. We prove that every component of $\mathcal{F}(X)$ which contains an unbounded closed subset is homeomorphic to the Hilbert space $\ell^2(2^{\aleph_0})$.

Р. Коти. O несепарабельных компонентах гиперпространств с метрикой Хаусдорфа // Мат. Студії. — 2011. — Т.35, №1. — С.91—105.

Пусть (X,d) — связное некомпактное метрическое пространство. Предположим, что метрика d выпукла и каждое замкнутое ограниченное подмножество в X компактно. Через $\mathcal{F}(X)$ обозначается гиперпространство непустых замкнутых подмножеств пространства X с метрикой Хаусдорфа. Доказано, что каждая связная компонента гиперпространства $\mathcal{F}(X)$, содержащая неограниченное замкнутое подмножество, гомеоморфна гильбертовому пространству $l^2(2^{\aleph_0})$ плотности континуум.

1. Introduction. Soit (X, d) un espace métrique. Nous notons $\mathcal{F}(X)$ l'ensemble des fermés non vides de X muni de la distance de Hausdorff

$$d_H(A, B) = \max \Big\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \Big\}.$$

Cette distance peut prendre la valeur ∞ , mais détermine une topologie métrisable sur $\mathcal{F}(X)$, et sa restriction à chaque composante connexe de $\mathcal{F}(X)$ est finie. En outre, chaque composante connexe de $\mathcal{F}(X)$ est soit entièrement constituée d'ensembles bornés, soit entièrement constituée d'ensembles non bornés.

W. Kubiś et K. Sakai ont prouvé dans [3] que toute composante connexe non séparable de $\mathcal{F}(\mathbb{R})$ ne contenant aucun des ensembles \mathbb{R} , $[0,\infty)$ et $(-\infty,0]$ est homéomorphe à $\ell^2(2^{\aleph_0})$, et ils ont demandé si ce résultat pouvait s'étendre aux composantes de $\mathcal{F}(\mathbb{R})$ contenant l'un de ces trois ensembles, ainsi qu'aux composantes non séparables de $\mathcal{F}(\mathbb{R}^n)$. Le théorème suivant résout, en particulier, ces questions.

Théorème. Soit X un espace métrique connexe non compact dont la distance d est convexe et telle que tout sous-ensemble fermé borné de X soit compact. Si \mathcal{H} est une composante connexe de $\mathcal{F}(X)$ ne contenant aucun fermé borné, alors \mathcal{H} est homéomorphe à $\ell^2(2^{\aleph_0})$.

²⁰¹⁰ Mathematics Subject Classification: 54B20, 57N20.

Rappelons qu'une distance d est convexe si, quels que soient les points x, y de X et les réels positifs s, t vérifiant s + t = d(x, y), il existe $z \in X$ tel que d(x, z) = s et d(y, z) = t.

Pour un espace métrique (X,d) vérifiant les hypothèses du théorème, la structure de l'espace $\mathcal{F}(X)$ est entièrement déterminée. D'après le théorème A de [4], les composantes connexes de $\mathcal{F}(X)$ sont ouvertes, donc $\mathcal{F}(X)$ est somme topologique de ses composantes connexes. L'ensemble des fermés bornés de X est une composante de $\mathcal{F}(X)$, qui est homéomorphe au cube de Hilbert privé d'un point (D. Curtis [1]). L'ensemble des composantes de $\mathcal{F}(X)$ formées d'ensembles non bornés a la puissance du continu (il ne peut y en avoir plus puisque l'ensemble des fermés de X a la puissance du continu, et l'argument utilisé dans la démonstration de la proposition 7.2 de [4] peut être adapté pour montrer qu'il n'y en a pas moins), et chacune de ces composantes est homéomorphe à $\ell^2(2^{\aleph_0})$.

2. Préliminaires. Nous notons I l'intervalle [0,1].

Soit (X,d) comme dans l'énoncé du théorème. Pour $x \in X$ et r > 0, nous notons B(x,r) la d-boule ouverte de centre x et de rayon r et, pour $r \geq 0$, nous notons $\overline{B}(x,r)$ la d-boule fermée de centre x et de rayon r. Puisque d est convexe, $\overline{B}(x,r)$ est la fermeture de B(x,r) pour tout r > 0. Puisque X est connexe et non borné, $\overline{B}(x,r)$ contient des points y tels que d(x,y) = r, et il résulte alors facilement de la convexité de d que $d_H(\overline{B}(x,r),\overline{B}(x,s)) = |r-s|$ quels que soient r et s. Puisque tout fermé borné est compact, la distance d est complète, et la convexité de d garantit que, quels que soient les points x,y de X, il existe une fonction continue $\omega \colon [0,d(x,y)] \to X$ telle que $\omega(0) = x, \omega(d(x,y)) = y$ et $d(\omega(s),\omega(t)) = |s-t|$ quels que soient s et t dans [0,d(x,y)]. Pour une telle distance d, il est très facile de reconnaître si deux fermés sont dans la même composante de $\mathcal{F}(X)$:

Lemme 1. Si (X, d) est comme dans l'énoncé du théorème, alors deux fermés F_0 et F_1 de X sont dans la même composante de $\mathcal{F}(X)$ si, et seulement si, $d_H(F_0, F_1) < \infty$.

Démonstration. Quelle que soit d, deux fermés tels que $d_H(F_0, F_1) = \infty$ ne sont jamais dans la même composante de $\mathcal{F}(X)$. Supposons que $\delta = d_H(F_0, F_1) < \infty$. Définissons des chemins $\omega_0, \omega_1, \hat{\omega}_0$ et $\hat{\omega}_1$ de I dans $\mathcal{F}(X)$ en posant, pour j = 0, 1 et $t \in I$, $\omega_j(t) = \{x \in X \mid d(x, F_j) \le t\delta\}$ et $\hat{\omega}_j(t) = \omega_j(1) \cup \omega_{1-j}(t)$. Alors $\omega_j(0) = F_j, \omega_j(1)$ contient F_{1-j} , donc $\hat{\omega}_j(0) = \omega_j(1)$, et $\hat{\omega}_0(1) = \hat{\omega}_1(1) = \{x \in X \mid d(x, F_0 \cup F_1) \le \delta\}$, ce qui montre que F_0 et F_1 sont dans la même composante de $\mathcal{F}(X)$.

Soit ϵ un réel positif. Nous dirons qu'un sous-ensemble E de X est ϵ -discret si $d(x,y) \geq \epsilon$ quels que soient x et y dans E. Le lemme de Zorn garantit que tout sous-ensemble ϵ -discret de X est contenu dans un sous-ensemble ϵ -discret maximal.

Nous ne ferons aucune distinction entre un complexe simplicial K et sa réalisation géométrique. Par un simplexe de K, nous entendons un simplexe fermé. Pour $n \geq 0$, nous notons $K^{(n)}$ le n-squelette de K. Si v_0, \ldots, v_q sont des sommets de K qui engendrent un simplexe, nous notons $[v_0, \ldots, v_q]$ ce simplexe. Si σ et τ sont des simplexes de K, la notation $\sigma \leq \tau$ signifie que σ est une face de τ . Pour tout simplexe σ de K, nous notons $\overline{\operatorname{St}} \sigma$ l'étoile fermée de σ dans K, réunion de tous les simplexes de K contenant σ . Le barycentre du simplexe σ est noté b_{σ} . Nous notons K' la subdivision barycentrique de K; ses simplexes sont de la forme $[b_{\sigma_0}, \ldots, b_{\sigma_q}]$, où $\sigma_0 \leq \cdots \leq \sigma_q$.

Pour tout espace séparé Y, nous notons 2^Y l'ensemble des compacts non vides de Y avec la topologie de Vietoris. Le lemme suivant nous sera très utile.

Lemme 2. Soit K un complexe simplicial de dimension $k \ge 1$. Il existe une fonction continue $r \colon K \to 2^K$ vérifiant

- (i) r(x) = x pour tout $x \in K^{(1)}$,
- (ii) pour tout simplexe σ de K et tout $x \in \sigma$, r(x) est un sous-ensemble de $\sigma^{(1)}$ contenant au plus 3^{k-1} points.

Démonstration. Partant de l'identité r_1 de $K^{(1)}$, nous construisons inductivement la restriction r_n de r à $K^{(n)}$. Soit n < k, et supposons r_n construite. Si σ est un (n+1)-simplexe de K de bord $\dot{\sigma}$, le lemme 3.3 de [2] nous fournit une fonction continue $r_{\sigma} : \sigma \to 2^{\dot{\sigma}}$ telle que $r_{\sigma}(x) = x$ pour $x \in \dot{\sigma}$ et que $r_{\sigma}(x)$ contienne au plus trois points pour tout $x \in \sigma$. Nous pouvons alors définir r_{n+1} par $r_{n+1}(x) = r_n(x)$ pour $x \in K^{(n)}$ et $r_{n+1}(x) = r_n(r_{\sigma}(x))$ si x appartient au (n+1)-simplexe σ de K. Par récurrence, on vérifie que $r_n(x)$ contient au plus 3^{n-1} points, donc $r = r_k$ a les propriétés souhaitées.

Soit (Y,d) un espace métrique, et soit $\epsilon \colon Y \to]0,1]$ une fonction continue. Si f et g sont deux fonctions continues d'un espace Z dans Y, nous dirons que g est ϵ -proche de f si $d(f(z),g(z))<\epsilon(f(z))$ pour tout $z\in Z$. Nous notons $\bigoplus_{\alpha\in A}X_{\alpha}$ la somme topologique d'une famille d'espaces $(X_{\alpha})_{\alpha\in A}$.

La caractérisation suivante de l'espace $\ell^2(2^{\aleph_0})$ est due à H. Toruńczyk ([5] et [6]).

Lemme 3. Un espace métrique (Y, d) est homéomorphe à $\ell^2(2^{\aleph_0})$ si, et seulement si, c'est un rétracte absolu topologiquement complet vérifiant les deux conditions suivantes.

- (A) Soit A un ensemble discret de cardinal 2^{\aleph_0} . Si $f: [0,1]^n \times A \to Y$, $n \ge 0$, et $\epsilon: Y \to]0,1]$ sont des fonctions continues, il existe une fonction continue $g: [0,1]^n \times A \to Y$ qui est ϵ -proche de f et telle que la famille $\{g([0,1]^n \times \{\alpha\}) \mid \alpha \in A\}$ soit discrète dans Y.
- (B) Si $\{K_n\}_{n=1}^{\infty}$ est une suite de complexes simpliciaux de dimension finie ayant au plus 2^{\aleph_0} sommets, et si $f: \bigoplus_{n=1}^{\infty} K_n \to Y$ et $\epsilon: Y \to]0,1]$ sont des fonctions continues, il existe une fonction continue $g: \bigoplus_{n=1}^{\infty} K_n \to Y$ qui est ϵ -proche de f et telle que la famille $\{g(K_n) \mid n > 1\}$ soit discrète dans Y.

Nous utiliserons aussi le fait que si N est un ensemble infini dénombrable, alors N contient une famille $(N_{\alpha})_{\alpha \in A}$ de sous-ensembles ayant la puissance du continu et telle que $N_{\alpha} \setminus N_{\beta}$ soit infini si α et β sont des éléments distincts de A (identifiant N à \mathbb{Q} , il suffit de remarquer que si N_x est une suite de rationnels deux à deux distincts convergeant vers le réel x, alors $N_x \cap N_y$ est fini si $x \neq y$).

Si W est un recouvrement d'un espace X et A un sous-ensemble de X, nous notons $\operatorname{St}(A, \mathcal{W})$ la réunion des éléments de W rencontrant A, et nous définissons inductivement les recouvrements $\operatorname{St}^n(\mathcal{W})$ par $\operatorname{St}^0(\mathcal{W}) = \mathcal{W}$ et $\operatorname{St}^{n+1}(\mathcal{W}) = \{\operatorname{St}(W,\operatorname{St}^n(\mathcal{W})) \mid W \in \mathcal{W}\}$. Pour $n \geq 1$, nous posons $\operatorname{St}^n(A, \mathcal{W}) = \{\operatorname{St}(A,\operatorname{St}^{n-1}(\mathcal{W}))\}$.

- **3. Démonstration du théorème.** La distance d étant complète, il en est de même de d_H , donc (\mathcal{H}, d_H) est complet. D'après le théorème A de [4], \mathcal{H} est un rétracte absolu. Il ne reste donc plus qu'à vérifier les conditions (A) et (B) de la caractérisation de Toruńczyk, qui résultent du lemme suivant.
- **Lemme 4.** Soit A un ensemble de cardinal 2^{\aleph_0} et, pour tout $\alpha \in A$, soit K_{α} un complexe simplicial de dimension finie. Si $f: \bigoplus_{\alpha \in A} K_{\alpha} \to \mathcal{H}$ et $\epsilon: \mathcal{H} \to]0,1]$ sont des fonctions continues, il existe une fonction continue $g: \bigoplus_{\alpha \in A} K_{\alpha} \to \mathcal{H}$ qui est ϵ -proche de f et telle que la famille $\{g(K_{\alpha}) \mid \alpha \in A\}$ soit discrète dans \mathcal{H} .

Démonstration. Nous notons N_0 (resp. N_1) l'ensemble des entiers pairs (resp. impairs) ≥ 0 . Pour tout entier $p \geq 0$, soit $\mathfrak{t}_p = \{6p+1, 6p+3, 6p+5\}$, et soit $\mathfrak{T} = \{\mathfrak{t}_p \mid p \geq 0\}$. Soit $(\mathfrak{T}_{\alpha})_{\alpha \in A}$ une famille de sous-ensembles de \mathfrak{T} telle que $\mathfrak{T}_{\alpha} \setminus \mathfrak{T}_{\beta}$ soit infini pour tout couple ordonné (α, β) d'éléments distincts de A. Posons $N_{\alpha} = \bigcup \mathfrak{T}_{\alpha} \subset N_1$. Pour tout couple ordonné (α, β) d'éléments distincts de A, il existe alors une infinité d'entiers $p \geq 0$ tels que $\{6p+1, 6p+3, 6p+5\} \subset N_{\alpha} \setminus N_{\beta}$.

Construisons inductivement des sous-ensembles $E_0 \subset E_1 \subset ... \subset X$ de façon que E_m soit un sous-ensemble 4^{-m} -discret maximal de X. Pour tout couple (a,b) de points de $E = \bigcup_{m=0}^{\infty} E_m$, fixons un arc $J(a,b) \subset X$ d'extrémités a et b isométrique à [0,d(a,b)], et soit $\xi(a,b)$ une isométrie de [0,d(a,b)] sur J(a,b) telle que $\xi(a,b)(0) = a$ (donc $\xi(b,a)(t) = \xi(a,b)(d(a,b)-t)$).

Affirmation 1. Pour tout $m \ge 0$ et tout $x \in E_m$, il existe $y \in E_{m+1} \setminus E_m$ tel que $d(x,y) \le 2 \cdot 4^{-(m+1)}$.

Démonstration. Puisque X est connexe et non borné, il existe, pour tout entier $p \geq 1$ un point x_p de X tel que $d(x,x_p)=4^{-(m+1)}+\frac{1}{p}$. D'après la maximalité de E_{m+1} , il existe $y_p \in E_{m+1}$ tel que $d(x_p,y_p)<4^{-(m+1)}$. Alors $d(x,y_p)\geq d(x,x_p)-d(x_p,y_p)>\frac{1}{p}$, donc $y_p\neq x$. Si x' est un point de E_m distinct de x, alors, si $\frac{1}{p}<4^{-(m+1)}$,

$$d(x', y_p) \ge d(x', x) - d(x, x_p) - d(x_p, y_p) \ge 4^{-m} - (2 \cdot 4^{-(m+1)} + 1/p) > 0,$$

donc $x' \neq y_p$. Le point y_p est donc dans $E_{m+1} \setminus E_m$. D'autre part,

$$d(x, y_p) \le d(x, x_p) + d(x_p, y_p) < 2 \cdot 4^{(m+1)} + 1/p,$$

et, comme la boule $B(x, 4^{-m})$ ne contient qu'un nombre fini de points de E_{m+1} , il existe y tel que $y = y_p$ pour une infinité de p. Ce point y a les propriétés souhaitées.

Pour tout $m \ge 0$ et tout $x \in E_m \setminus E_{m-1}$ $(E_{-1} = \varnothing)$, fixons une fois pour toutes un point $b_m(x) \in E_{m+1} \setminus E_m$ tel que $d(x, b_m(x)) \le 2 \cdot 4^{-(m+1)}$; puisque x et $b_m(x)$ sont dans E_{m+1} , nous avons aussi $d(x, b_m(x)) \ge 4^{-(m+1)}$.

Prenons un recouvrement ouvert localement fini \mathcal{W} de \mathcal{H} dont tous les éléments W vérifient

$$d_H - \operatorname{diam} W < 1 \tag{1}$$

$$\epsilon_W = \sup\{\epsilon(H) \mid H \in W\} \le 2\inf\{\epsilon(H) \mid H \in W\}. \tag{2}$$

Fixons un point p_0 de X et définissons $\delta \colon X \to \mathbb{R}$ par $\delta(x) = d(p_0, x)$. Partant de $\gamma_0 \equiv 0$, nous construirons inductivement une suite (γ_n) de fonctions continues de \mathcal{H} dans \mathbb{R} . Pour $W \in \mathcal{W}$, nous poserons $\gamma_n^+(W) = \sup\{\gamma_n(H) \mid H \in W\}$. Les fonctions γ_n devront vérifier, pour tout $W \in \mathcal{W}$ et $H \in W$,

$$\gamma_{n+1}(H) \ge \gamma_n^+(W) + 6\epsilon_W \tag{3}$$

$$H \cap \delta^{-1}(]\gamma_n^+(W) + 2\epsilon_W, \gamma_{n+1}(H) - 2\epsilon_W[) \neq \varnothing.$$
(4)

Supposons γ_n construite de façon que sa restriction à $\operatorname{St}^m(W, \mathcal{W})$ soit majorée quels que soient $W \in \mathcal{W}$ et $m \geq 1$. Pour $W \in \mathcal{W}$, posons $\hat{\gamma}_W = \sup\{\gamma_n(H) \mid H \in \operatorname{St}(W, \mathcal{W})\}$, et fixons un point $F_W \in W$. Puisque F_W n'est pas borné, l'ensemble $F_W \cap \delta^{-1}([\hat{\gamma}_W + 3, \infty))$ n'est pas vide. Fixons un point $x_W \in F_W$ tel que $\delta(x_W) = \min \delta(F_W \cap \delta^{-1}([\hat{\gamma}_W + 3, \infty))$.

Soit $(\lambda_W)_{W \in \mathcal{W}}$ une partition de l'unité subordonnée à \mathcal{W} . Définissons la fonction continue $\gamma_{n+1} : \mathcal{H} \to \mathbb{R}$ par

$$\gamma_{n+1}(H) = \sum_{W \in \mathcal{W}} \lambda_W(H)(\delta(x_W) + 3).$$

Soient $W \in \mathcal{W}$ et H un point de W. Soient W_1, \ldots, W_q les ensembles tels que $\lambda_W(H) \neq 0$, numérotés de façon que $\delta(x_{W_1}) \leq \cdots \leq \delta(x_{W_q})$; alors $\gamma_{n+1}(H) \geq \delta(x_{W_1}) + 3$. Comme $W \cap W_1 \neq \emptyset$, nous avons $\hat{\gamma}_{W_1} \geq \gamma_n^+(W)$ et, puisque $\epsilon(\mathcal{H})$ est contenu dans]0,1], nous obtenons

$$\gamma_{n+1}(H) \ge \delta(x_{W_1}) + 3 \ge \hat{\gamma}_{W_1} + 6 \ge \gamma_n^+(W) + 6 \ge \gamma_n^+(W) + 6\epsilon_W,$$

donc (3) est vérifiée. D'après (1), $d_H(H, F_{W_1}) < 1$, donc il existe $x \in H$ tel que $d(x, x_{W_1}) < 1$. Alors $|\delta(x) - \delta(x_{W_1})| < 1$, donc $\delta(x)$ appartient à $[\delta(x_{W_1}) - 1, \delta(x_{W_1}) + 1]$ et, puisque

$$\gamma_n^+(W) + 2\epsilon_W \le \hat{\gamma}_{W_1} + 2 \le \delta(x_{W_1}) - 1 < \delta(x_{W_1}) + 1 \le \gamma_{n+1}(H) - 2,$$

la condition (4) est aussi vérifiée.

Soient $W \in \mathcal{W}$ et $m \geq 1$. Puisque γ_n est majorée sur $\operatorname{St}^{m+2}(W, \mathcal{W})$, il existe M tel que $\gamma_n(H) < M$ pour tout $H \in \operatorname{St}^{m+2}(W, \mathcal{W})$. Soit W' un élément de \mathcal{W} contenu dans $\operatorname{St}^m(W, \mathcal{W})$. Si H appartient à W', alors $\gamma_{n+1}(H) \leq \max\{\delta(x_{W''}) + 3\}$, où W'' parcourt les éléments de \mathcal{W} tels que $W' \cap W'' \neq \emptyset$. Pour prouver que γ_{n+1} est majorée sur $\operatorname{St}^m(W, \mathcal{W})$, il suffit donc de montrer qu'il existe M' tel que $\delta(x_{W''}) < M'$ pour tout $W'' \in \mathcal{W}$ tel que $W'' \cap \operatorname{St}^m(W, \mathcal{W}) \neq \emptyset$.

Si $W'' \cap \operatorname{St}^m(W, \mathcal{W}) \neq \emptyset$, alors $\operatorname{St}(W'', \mathcal{W})$ est contenu dans $\operatorname{St}^{m+2}(W, \mathcal{W})$, donc $\hat{\gamma}_{W''} \leq M$. Puisque F_W n'est pas borné, il contient un point y_W tel que $\delta(y_W) > M + m + 5$. Il résulte de (1) que $d_H(H, H_W) < m + 2$ pour tout $H \in \operatorname{St}^{m+1}(W, \mathcal{W})$, donc $H_{W''}$ contient un point y tel que $d(y, y_W) < m + 2$. Mais alors $\hat{\gamma}_{W''} + 3 \leq M + 3 < \delta(y_W) - (m + 2) < \delta(y)$, et, par définition de $x_{W''}$, nous avons $\delta(x_{W''}) \leq \delta(y) < \delta(y_W) + m + 2$ pour tout $W'' \in \mathcal{W}$ tel que $W'' \cap \operatorname{St}(W, \mathcal{W}) \neq \emptyset$.

Posons $K = \bigoplus_{\alpha \in A} K_{\alpha}$. Pour $\alpha \in A$, nous notons k_{α} la dimension de K_{α} . Fixons une triangulation \mathcal{T} du complexe K suffisamment fine pour que, pour tout simplexe σ de \mathcal{T} ,

il existe
$$W_{\sigma} \in \mathcal{W}$$
 tel que $f(\overline{\operatorname{St}} \sigma) \subset W_{\sigma}$ (5)

$$d_{H}\operatorname{-diam}(f(\operatorname{\overline{St}}\sigma)) < \frac{1}{18}\inf\{\epsilon(f(x)) \mid x \in \operatorname{\overline{St}}\sigma\}.$$
(6)

Il résulte de (5) et (2) que

$$\sup\{\epsilon(f(x)) \mid x \in \overline{\operatorname{St}}\,\sigma\} \le 2\inf\{\epsilon(f(x)) \mid x \in \overline{\operatorname{St}}\,\sigma\}. \tag{7}$$

Pour tout simplexe σ de \mathcal{T} , nous notons α_{σ} l'élément de A tel que $K_{\alpha_{\sigma}}$ contienne σ et $k_{\sigma} = k_{\alpha_{\sigma}}$. Posons $\epsilon_{\sigma} = \inf\{\epsilon(f(x)) \mid x \in \operatorname{\overline{St}} \sigma\}/18$, et soit m_{σ} le plus petit entier tel que $4^{-m_{\sigma}} \leq \epsilon_{\sigma}$. Si σ est une face de τ , alors $\operatorname{\overline{St}} \tau \subset \operatorname{\overline{St}} \sigma$, et il résulte de (7) que

$$\epsilon_{\sigma} \le \epsilon_{\tau} \le 2\epsilon_{\sigma} \text{ et } m_{\tau} \le m_{\sigma} \le m_{\tau} + 1.$$
 (8)

Posons $F'_{\sigma} = \{x \in E_{m_{\sigma}} \mid d(x, f(b_{\sigma})) \leq 4^{-m_{\sigma}}\}, F''_{\sigma} = \{x \in E_{m_{\sigma}} \setminus E_{m_{\sigma}-1} \mid d(x, f(b_{\sigma})) \leq 3 \cdot 4^{-m_{\sigma}}\} \text{ et}$

$$F_{\sigma} = \bigcup_{\sigma < \tau} F_{\tau}' \cup F_{\tau}''.$$

Il résulte de (8) que F_{σ} est contenu dans $E_{m_{\sigma}}$. Puisque $E_{m_{\sigma}}$ est un sous-ensemble $4^{-m_{\sigma}}$ -discret maximal de X, il existe, pour tout $y \in f(b_{\sigma})$, un point x de $E_{m_{\sigma}}$ tel que $d(x,y) \leq 4^{-m_{\sigma}} \leq \epsilon_{\sigma}$, et ce point x est dans F'_{σ} . Inversement, si x appartient à F_{σ} , et si τ est un simplexe tel que $\sigma \leq \tau$ et $d(x, f(b_{\tau})) \leq 3.4^{-m_{\tau}}$, alors, d'après (6) et (8), $d(x, f(b_{\sigma})) \leq d(x, f(b_{\tau})) + d_H(f(b_{\tau}), f(b_{\sigma})) \leq 3\epsilon_{\tau} + \epsilon_{\sigma} \leq 7\epsilon_{\sigma}$. Ce qui précède montre que

$$d_H(f(b_\sigma), F_\sigma) \le 7\epsilon_\sigma. \tag{9}$$

Pour $n \geq 0$, posons

$$\widetilde{F}_{\sigma}^{n} = (F_{\sigma}' \cup F_{\sigma}'') \cap \delta^{-1}(]\gamma_{n}(f(b_{\sigma})) + \frac{3}{2}\epsilon(f(b_{\sigma}))), \gamma_{n+1}(f(b_{\sigma})) - \frac{3}{2}\epsilon(f(b_{\sigma}))[), \quad F_{\sigma}^{n} = \bigcup_{\sigma \leq \tau} \widetilde{F}_{\tau}^{n},$$

et soit $F_{\sigma}^* = \bigcup \{F_{\sigma}^n \mid n \in N_{\alpha_{\sigma}}\}.$

D'après (4), $f(b_{\sigma}) \cap \delta^{-1}(]\gamma_n(f(b_{\sigma})) + 2\epsilon(f(b_{\sigma}))$, $\gamma_{n+1}(f(b_{\sigma})) - 2\epsilon(f(b_{\sigma}))[)$ contient un point y, et il existe $x \in F'_{\sigma}$ tel que $d(x,y) \leq 4^{-m_{\sigma}} < \frac{1}{2}\epsilon(f(b_{\sigma}))$; si $x \in E_{m_{\sigma}-1}$, l'affirmation 1 nous fournit un $x' \in E_{m_{\sigma}} \setminus E_{m_{\sigma}-1}$ tel que $d(x,x') \leq 2 \cdot 4^{-m_{\sigma}}$. Alors x' appartient à F''_{σ} et $d(y,x') \leq 3 \cdot 4^{-m_{\sigma}}$. Comme $3 \cdot 4^{-m_{\sigma}} \leq 3\epsilon_{\sigma} < \frac{1}{2}\epsilon(f(b_{\sigma}))$, cela montre que $\widetilde{F}^n_{\sigma} \cap (E_{m_{\sigma}} \setminus E_{m_{\sigma}-1}) \neq \emptyset$. Etant borné et contenu dans l'ensemble discret $E_{m_{\sigma}}$, F^n_{σ} est fini. Par définition, si $\sigma \leq \sigma'$, alors $F^n_{\sigma'} \subset F^n_{\sigma}$ pour tout n.

Affirmation 2. Si n + 1 < m, alors $\delta(x) < \delta(x')$ quels que soient $x \in F_{\sigma}^{n}$ et $x' \in F_{\sigma}^{m}$.

Démonstration. Soient τ et τ' des simplexes tels que $\sigma \leq \tau$, $\sigma \leq \tau'$, $x \in \widetilde{F}_{\tau}^n$ et $x' \in \widetilde{F}_{\tau'}^m$. D'après (5), W_{σ} contient $f(b_{\tau})$ et $f(b_{\tau'})$. En utilisant (3), nous avons

$$\delta(x) < \gamma_{n+1}(f(b_{\tau})) \le \gamma_{n+1}^+(W_{\sigma}) < \gamma_{n+2}(f(b_{\tau'})) \le \gamma_m(f(b_{\tau'})) < \delta(x').$$

Pour tout $n \in N_0$, fixons un point $c_{\sigma}^n \in \widetilde{F}_{\sigma}^n \cap (E_{m_{\sigma}} \setminus E_{m_{\sigma}-1})$. Soit \mathcal{C}_{σ}^n l'ensemble des couples (a,b) de points distincts de $E_{m_{\sigma}+1}$ tels que $d(a,b) < 9\epsilon_{\sigma}$ et que $d(c_{\sigma}^n,J(a,b)) \leq 4^{-(m_{\sigma}+3)}$. L'ensemble \mathcal{C}_{σ}^n est fini puisque tous ces points a et b sont contenus dans le compact $\overline{B}(c_{\sigma}^n,9\epsilon_{\sigma}+4^{-(m_{\sigma}+3)})$ et que $E_{m_{\sigma}+1}$ est discret. Pour chaque couple $(a,b) \in \mathcal{C}_{\sigma}^n$, fixons des points $u^+(a,b)$ et $u^-(a,b)$ dans J(a,b) tels que $d(c_{\sigma}^n,u^{\pm}(a,b))=4^{-(m_{\sigma}+3)}$ et que $J(a,b)\setminus [u^+(a,b),u^-(a,b)]$ ne contienne aucun point x tel que $d(c_{\sigma}^n,x)=4^{-(m_{\sigma}+3)}$, où $[u^+(a,b),u^-(a,b)]$ est le sous-arc de J(a,b) d'extrémités $u^{\pm}(a,b)$ (ces deux points $u^{\pm}(a,b)$ peuvent coïncider, ce qui est en particulier le cas quand c_{σ}^n est l'un des points a ou b). Soit $U_{\sigma}^n(0)$ l'ensemble (fini) des points de la forme $u^{\pm}(a,b)$, où (a,b) parcourt \mathcal{C}_{σ}^n .

Posons $b_{\sigma}^{n}=b_{m_{\sigma}}(c_{\sigma}^{n}),\ J_{\sigma}^{n}=J(c_{\sigma}^{n},b_{\sigma}^{n})$ et $\xi_{\sigma}^{n}=\xi(c_{\sigma}^{n},b_{\sigma}^{n})\colon [0,d(c_{\sigma}^{n},b_{\sigma}^{n})]\to J_{\sigma}^{n}$. Puisque $d(c_{\sigma}^{n},b_{\sigma}^{n})\leq 2.4^{-(m_{\sigma}+1)},$ le couple $(c_{\sigma}^{n},b_{\sigma}^{n})$ appartient à $\mathcal{C}_{\sigma}^{n},$ donc $\xi_{\sigma}^{n}(4^{-(m_{\sigma}+3)})$ appartient à $U_{\sigma}^{n}(0)$. Posons $U_{\sigma}^{n}(1)=\{\xi_{\sigma}^{n}(\frac{1}{2}\cdot 4^{-(m_{\sigma}+3)})\}$ et

$$U_{\sigma}^{n}(2) = \begin{cases} \{\xi_{\sigma}^{n}(\frac{4}{6} \cdot 4^{-(m_{\sigma}+3)})\} & \text{si } n = 4p \\ \emptyset & \text{si } n = 4p + 2 \end{cases}$$
$$U_{\sigma}^{n}(3) = \begin{cases} \{\xi_{\sigma}^{n}(\frac{5}{6} \cdot 4^{-(m_{\sigma}+3)})\} & \text{si } n \leq 2k_{\sigma} \\ \emptyset & \text{si } n > 2k_{\sigma}, \end{cases}$$

et soit $U_{\sigma}^n = \bigcup_{j=0}^3 U_{\sigma}^n(j)$.

Posons $C_{\sigma} = \{c_{\sigma'}^n \mid \sigma \leq \sigma' \text{ et } n \in N_0\}.$

Remarque. Pour $x=c_{\sigma'}^n\in C_{\sigma}$, l'ensemble $U_{\sigma'}^n$ ne dépend que de x, et pas du simplexe σ' tel que $\sigma\leq\sigma'$ et $x=c_{\sigma'}^n$. En effet, si σ'' est un autre simplexe tel que $\sigma\leq\sigma''$ et $x=c_{\sigma''}^{n'}$, alors le choix des c_{σ}^n garantit que $m_{\sigma'}=m_{\sigma''}$, donc $U_{\sigma'}^n(j)=U_{\sigma''}^{n'}(j)$ pour j=0,1. Puisque n et n' sont pairs, l'affirmation 2 entraı̂ne n=n', donc $U_{\sigma'}^n(2)=U_{\sigma''}^{n'}(2)$. Enfin, σ' et σ'' étant contenus dans le même complexe K_{α} , nous avons $k_{\sigma'}=k_{\sigma''}$, donc $U_{\sigma'}^n(3)=U_{\sigma''}^{n'}(3)$.

Pour $x \in F_{\sigma}$, définissons un nombre $\eta_{\sigma}(x) > 0$ par

$$\eta_{\sigma}(x) = \begin{cases} 0 & \text{si } x \in C_{\sigma} \\ 4^{-(m_{\sigma}+4)} & \text{si } x \in \bigcup_{n \in N_{\alpha_{\sigma}}} F_{\sigma}^{n} \\ 4^{-(m_{\sigma}+6)} & \text{sinon.} \end{cases}$$

Puisque F_{σ} est contenu dans $E_{m_{\sigma}}$, les boules fermées $\overline{B}(x,\eta(x))$, $x \in F_{\sigma}$, sont deux à deux disjointes. En outre, il résulte de (8) que si $\sigma \leq \sigma'$, alors $m_{\sigma'} \leq m_{\sigma} \leq m_{\sigma'} + 1$, donc $\overline{B}(x,\eta_{\sigma}(x)) \cap U_{\sigma'}^n = \emptyset$ si $\sigma \leq \sigma'$ et $c_{\sigma'}^n \neq x \in F_{\sigma}$.

Pour tout simplexe σ de K, posons

$$g(b_{\sigma}) = \big(\bigcup_{x \in F_{\sigma}} \overline{B}(x, \eta_{\sigma}(x))\big) \cup \big(\bigcup_{n \in N_0} \bigcup_{\sigma < \sigma'} U_{\sigma'}^n\big).$$

Cet ensemble est réunion de deux familles localement finies de compacts, donc est fermé. Pour $\sigma \leq \sigma'$, $U_{\sigma'}^n$ est contenu dans $\overline{B}(c_{\sigma'}^n, 4^{-(m_{\sigma'}+3)})$. La condition (8) entraı̂ne que $m_{\sigma'} \geq m_{\sigma} - 1$, donc nous avons $d(y, F_{\sigma}) \leq 4^{-(m_{\sigma}+2)}$ pour tout $y \in g(b_{\sigma})$. Comme $g(b_{\sigma})$ contient F_{σ} , il en résulte que

$$d_H(g(b_\sigma), F_\sigma) \le 4^{-(m_\sigma + 2)} \le \epsilon_\sigma / 16. \tag{10}$$

Soient $\sigma_0 \leq \sigma_1$ des simplexes de K. Par construction, F_{σ_1} est contenu dans F_{σ_0} et C_{σ_1} est contenu dans C_{σ_0} . Outre l'inclusion propre de F_{σ_1} dans F_{σ_0} , les différences possibles entre $g(b_{\sigma_0})$ et $g(b_{\sigma_1})$ sont les suivantes:

- a) un point peut appartenir à C_{σ_0} et à $F_{\sigma_1} \setminus C_{\sigma_1}$,
- b) si $m_{\sigma_0} \neq m_{\sigma_1}$, auquel cas $m_{\sigma_1} = m_{\sigma_0} 1$, alors $\eta_{\sigma_0}(x) \neq \eta_{\sigma_1}(x)$ pour $x \in F_{\sigma_1} \setminus C_{\sigma_1}$.

Pour définir la restriction de g au 1-simplexe $[b_{\sigma_0}, b_{\sigma_1}]$ de K', nous construirons, pour tout $x \in F_{\sigma_0}$, un chemin $\zeta_x \colon I \to 2^X$ de façon que $\zeta_x(0) = \overline{B}(x, \eta_{\sigma_0}(x))$ si $x \in F_{\sigma_0} \setminus C_{\sigma_0}$, $\zeta_x(0) = \{c_{\sigma}^n\} \cup U_{\sigma}^n$ si $x = c_{\sigma}^n \in C_{\sigma_0}$, $\zeta_x(1) \subset g(b_{\sigma_1})$, $\zeta_x(1) = \overline{B}(x, \eta_{\sigma_1}(x))$ si $x \in F_{\sigma_1} \setminus C_{\sigma_1}$ et $\zeta_x(1) = \{c_{\sigma}^n\} \cup U_{\sigma}^n$ si $x = c_{\sigma}^n \in C_{\sigma_1}$. Nous poserons alors, pour $y = (1-t)b_{\sigma_0} + tb_{\sigma_1} \in [b_{\sigma_0}, b_{\sigma_1}]$,

$$g(y) = \bigcup_{x \in F_{\sigma_0}} \zeta_x(t).$$

Les conditions imposées aux ζ_x garantissent que cette définition redonne $g(b_{\sigma_i})$ quand $y = b_{\sigma_i}$. Pour obtenir ces chemins ζ_x , nous avons besoin de quelques constructions auxiliaires.

Pour i = 0, 1 et $x \in F_{\sigma_i} \setminus C_{\sigma_i}$, définissons $\psi_x^i : I \to 2^X$ par $\psi_x^i(t) = \overline{B}(x, (1-t)\eta_{\sigma_i}(x))$, de sorte que $\psi_x^i(0) = \overline{B}(x, \eta_{\sigma_i}(x))$ et $\psi_x^i(1) = \{x\}$. Si $x = c_\sigma^n \in C_{\sigma_0}$, prenons, pour tout point u de l'ensemble fini U_σ^n , un chemin $\varphi_u : I \to X$ tel que $\varphi_u(0) = u$, $\varphi_u(1) = x$ et $d(\varphi_u(s), \varphi_u(t)) = |s-t|d(x, u)$, et définissons $\psi_x^0 : I \to 2^X$ par $\psi_x^0(t) = \{x\} \cup \{\varphi_u(t) \mid u \in U_\sigma^n\}$.

Alors $\psi_x(0) = \{c_\sigma^n\} \cup U_\sigma^n$ et $\psi_x(1) = \{x\}$. Pour $x \in F_{\sigma_i} \setminus C_{\sigma_i}$, nous avons $\eta_{\sigma_i}(x) \le 4^{-(m_{\sigma_i}+4)} \le 4^{-(m_{\sigma_0}+3)}$. Si $x = c_\sigma^n \in C_{\sigma_0}$, alors $m_\sigma \ge m_{\sigma_0} - 1$, donc $d(x,u) \le 4^{-(m_\sigma+3)} \le 4^{-(m_{\sigma_0}+2)}$ pour tout $u \in U_\sigma^n$. Il en résulte facilement que ces chemins ψ_x^i vérifient

$$d_H(\psi_x^i(s), \psi_x^i(t)) \le 4^{-(m_{\sigma_0} + 2)} |s - t| \qquad \forall s, t \in I.$$
(11)

Si x est un point de $F_{\sigma_0} \setminus F_{\sigma_1}$, il existe un simplexe τ et un point y_1 de $f(b_{\tau})$ tels que $\sigma_0 \leq \tau$ et $d(x,y_1) \leq 3 \cdot 4^{-m_{\tau}} \leq 3\epsilon_{\tau}$. Les simplexes σ_1 et τ sont contenus dans $\overline{\operatorname{St}} \sigma_0$, donc $d_H(f(b_{\tau}), f(b_{\sigma_1})) < \epsilon_{\sigma_0}$, et il existe $y_2 \in f(b_{\sigma_1})$ tel que $d(y_1, y_2) < \epsilon_{\sigma_0}$. Enfin, il existe $y_3 \in F'_{\sigma_1} \subset F_{\sigma_1}$ tel que $d(y_2, y_3) \leq 4^{-m_{\sigma_1}} \leq \epsilon_{\sigma_1}$, d'où, en utilisant (8), $d(x, F_{\sigma_1}) \leq d(x, y_3) < 3\epsilon_{\tau} + \epsilon_{\sigma_0} + \epsilon_{\sigma_1} \leq 9\epsilon_{\sigma_0}$.

Pour tout $x \in F_{\sigma_0} \setminus F_{\sigma_1}$, fixons un point $x'_x \in F_{\sigma_1}$ tel que $d(x, x'_x)$ soit minimale, et soit \widehat{J}_x le sous-arc de $J(x, x'_x)$ irréductible entre x et $F_{\sigma_1} \cup (\bigcup_{n \in N_0} \bigcup_{\sigma_1 < \sigma'} U^n_{\sigma'})$. Nous avons alors

$$\operatorname{diam} \widehat{J}_x \le \operatorname{diam} J(x, x_x') < 9\epsilon_{\sigma_0}. \tag{12}$$

Notons \hat{x}_x , ou simplement \hat{x} , l'extrémité de \widehat{J}_x distincte de x, et soit $\hat{\xi}_x \colon I \to \widehat{J}_x$ une fonction telle que $\hat{\xi}_x(0) = x$, $\hat{\xi}_x(1) = \hat{x}$ et $d(\hat{\xi}(s), \hat{\xi}(t)) = |s - t| d(x, \hat{x})$ quels que soient s et t. Soit $\mathcal{E}_x = \{z \in E_{m_{\sigma_0}+1} \mid d(z, \widehat{J}_x) \leq 4^{-(m_{\sigma_0}+4)}\}$. Si z_1, z_2 appartiennent à \mathcal{E}_x et si y_1, y_2 sont des points de \widehat{J}_x tels que $d(y_i, z_i) \leq 4^{-(m_{\sigma_0}+4)}$, alors

$$d(y_1,y_2) \ge d(z_1,z_2) - d(y_1,z_1) - d(y_2,z_2) \ge 4^{-(m_{\sigma_0}+1)} - 2 \cdot 4^{-(m_{\sigma_0}+4)} = 4^{-(m_{\sigma_0}+1)} (1 - 2 \cdot 4^{-3}).$$

Par définition de m_{σ_0} , nous avons $\epsilon_{\sigma_0} < 4^{-(m_{\sigma_0}-1)}$, et il résulte de (12) que \mathcal{E}_x contient au plus $9 \cdot 4^{-(m_{\sigma_0}-1)}/4^{-(m_{\sigma_0}+1)}(1-2\cdot 4^{-3}) < 4^4$ points. Soient $x=x_0,x_1,\ldots,x_{q-1}$ les éléments de \mathcal{E}_x distincts de \hat{x} , numérotés dans l'ordre de x à \hat{x} ; posons $x_q=\hat{x}$. Pour 0 < i < q, soit x_i^- (resp. x_i^+) le premier (resp. dernier) point de $\overline{B}(x_i,4^{-(m_{\sigma_0}+4)})\cap \hat{J}_x$ dans l'ordre de x à \hat{x} . Soit x_0^+ le point de \hat{J}_x tel que $d(x,x_0^+)=4^{-(m_{\sigma_0}+4)}$. Si \hat{x} appartient à F_{σ_1} , nous notons x_q^- le point de \hat{J}_x tel que $d(x_q^-,\hat{x})=4^{-(m_{\sigma_0}+4)}$; si \hat{x} n'appartient pas à F_{σ_1} , nous posons $x_q^-=\hat{x}$. Alors, pour $0 \le i < j \le q$, x_i^+ précède x_j^- dans l'ordre de x à \hat{x} . Pour chacun des points x_i^\pm ainsi définis, prenons une fonction $\kappa_{x_i}^\pm$: $[0,4^{-(m_{\sigma_0}+4)}]\to X$ telle que $\kappa_{x_i}^\pm(0)=x_i$ et $\kappa_{x_i}^\pm(4^{-(m_{\sigma_0}+4)})=x_i^\pm$. Si $x_i^\pm\neq\hat{x}$, $\kappa_{x_i}^\pm$ est une isométrie de $[0,4^{-(m_{\sigma_0}+4)}]$ sur un arc d'extrémités x_i et x_i^\pm , et si $x_q^-=\hat{x}$, $\kappa_{x_i}^-(t)=\hat{x}$ pour tout t. Nous notons v_i^\pm l'élément de I tel que $\hat{\xi}(v_i^\pm)=x_i^\pm$.

I tel que $\hat{\xi}(v_i^{\pm}) = x_i^{\pm}$. Pour $0 \le i \le 4^4$, soit $t_i = i \cdot 4^4$. Pour $0 \le i < 4^4$, soit $t_i^+ = t_i + 4^{-5}$, et pour $0 < i \le 4^4$, soit $t_i^- = t_i - 4^{-5}$, de sorte que $t_{i+1}^- - t_i^+ = \frac{1}{2}4^{-4}$. Définissons une fonction $\chi_x \colon I \to 2^X$ comme suit:

$$\chi_x(t) = \begin{cases} \{\kappa_{x,i}^+(4^{-m_{\sigma_0}+1}s)\} & \text{si } t = t_i + s \in [t_i, t_i^+] & 0 \le i < q \\ \{\kappa_{x,i}^-(4^{-m_{\sigma_0}+1}s)\} & \text{si } t = t_i - s \in [t_i^-, t_i] & 0 < i \le q \end{cases}$$

Pour $t = t_i^+ + s(t_{i+1}^- - t_i^+)$ avec i < q, posons

$$\chi_x(t) = \begin{cases} \hat{\xi}_x([v_i^+, v_i^+ + 2s(v_{i+1}^- - v_i^+)]) & \text{si } 0 \le s \le 1/2\\ \hat{\xi}_x([2(1-s)v_i^+ + (2s-1)v_{i+1}^-, v_{i+1}^-]) & \text{si } 1/2 \le s \le 1 \end{cases}.$$

Enfin, nous posons $\chi_x(t) = \{\hat{x}\}$ pour $t \geq t_q$. Nous laissons au lecteur le soin de vérifier que χ_x est bien défini. Par construction, $\chi_x(0) = \{x\}$ et $\chi_x(1) = \{\hat{x}\}$. Pour $t, t' \in I$, nous avons

$$d_H(\chi_x(t), \chi_x(t')) < 4^5 \cdot 9\epsilon_{\sigma_0}|t - t'|. \tag{13}$$

Il suffit de vérifier cette inégalité quand t et t' appartiennent tous deux à l'un des intervalles utilisés dans la définition de χ_x . Si t et t' appartiennent à un intervalle $[t_i, t_i^+]$ ou $[t_i^-, t_i]$ sur lequel χ_x n'est pas constante, alors $d_H(\chi_x(t), \chi_x(t')) = 4^{-m_{\sigma_0}+1}|t-t'| \leq 4\epsilon_{\sigma_0}|t-t'|$

puisque κ_i^{\pm} est une isométrie. Si $t = t_i^+ + s(t_{i+1}^- - t_i^+)$ et $t' = t_i^+ + s'(t_{i+1}^- - t_i^+)$ avec $0 \le s, s' \le 1/2$ et i < q, alors, puisque $t_{i+1}^- - t_i^+ = \frac{1}{2}4^{-4}$, nous avons $|s - s'| = 2 \cdot 4^4 |t - t'|$ et

$$d_H(\chi_x(t), \chi_x(t')) = d(\hat{\xi}_x(v_i^+ + 2s(v_{i+1}^- - v_i^+), \hat{\xi}_x(v_i^+ + 2s'(v_{i+1}^- - v_i^+))) =$$

$$= 2|s - s'||v_{i+1}^- - v_i^+|d(x, \hat{x})| < 4^5 \cdot 9\epsilon_{\sigma_0}|t - t'|.$$

Un calcul analogue s'applique quand t et t' sont dans un intervalle $[t_i^+ + \frac{1}{2}(t_{i+1}^- - t_i^+), t_{i+1}^-]$ avec i < q, d'où (13).

Avec les notation précédentes, nous pouvons maintenant définir ζ_x , pour $x \in F_{\sigma_0} \setminus F_{\sigma_1}$ par

$$\zeta_x(t) = \begin{cases}
\psi_x^0(0) \cup \chi_x(4t(t_0^+ + \frac{1}{2}(t_1^- - t_0^+))) & \text{si } 0 \le t \le 1/4 \\
\psi_x^0(4t - 1) \cup \chi_x(t_0^+ + \frac{1}{2}(t_1^- - t_0^+)) & \text{si } 1/4 \le t \le 1/2 \\
\chi_x((4t - 2)(t_0^+ + \frac{1}{2}(t_1^- - t_0^+)) & \text{si } 1/2 \le t \le 3/4 \\
\cup \chi_x(t_0^+ + \frac{1}{2}(t_1^- - t_0^+)) & \text{si } 3/4 \le t \le 1
\end{cases}$$

Alors $\zeta_x(0) = \psi_x^0(0)$ et $\zeta_x(1) = \{\hat{x}\}$. D'après (11), nous avons $d_H(\psi_x^0(4t-1), \psi_x^0(4t'-1)) < 4^{-m_{\sigma_0}}|t-t'| \leq |t-t'|\epsilon_{m_{\sigma_0}}$ pour $1/4 \leq t \leq 1/2$. Combinant ceci avec (13), on constate que, quels que soient t et t',

$$d_H(\zeta_x(t), \zeta_x(t')) < 4^6 \cdot 9\epsilon_{\sigma_0}|t - t'|, \tag{14}$$

en vérifiant cette inégalité dans chacun des intervalles [0,1/4], [1/4,1/2], [1/2,3/4] et [3/4,1]. D'autre part, $\zeta_x(t)$ est, pour tout t, contenu dans la réunion de \widehat{J}_x , des boules $\overline{B}(x_i,4^{-(m_{\sigma_0}+4)})$ avec $x_i \in \mathcal{E}_x$ et de la boule $\overline{B}(x,\eta)$, où $\eta = \eta_{\sigma_0}$ si $x \notin C_{\sigma_0}$ et $\eta = 4^{-(m_{\sigma}+3)} \le 4^{-(m_{\sigma_0}+2)}$ si $x = c_{\sigma}^n \in C_{\sigma_0}$. Comme $\eta_{\sigma_0}(x) < 4^{-(m_{\sigma_0}+2)}$, nous avons donc

$$\operatorname{diam} \bigcup \zeta(I) \le \operatorname{diam} \widehat{J}_x + 4^{-(m_{\sigma_0} + 2)} + 2 \cdot 4^{-(m_{\sigma_0} + 4)} \le 9\epsilon_{\sigma_0} + \frac{\epsilon_{\sigma_0}}{4^2} + \frac{2\epsilon_{\sigma_0}}{4^4} < \left(9 + \frac{1}{4}\right)\epsilon_{\sigma_0}. \tag{15}$$

Pour $x \in C_{\sigma_0} \cap (F_{\sigma_1} \setminus C_{\sigma_1})$, posons

$$\zeta_x(t) = \begin{cases} \psi_x^0(0) \cup \psi_x^1(1 - 2t) & \text{si } 0 \le t \le 1/2\\ \psi_x^0(2t - 1) \cup \psi_x^1(0) & \text{si } 1/2 \le t \le 1. \end{cases}$$

Posons $\zeta_x(t) = \overline{B}(x, (1-t)\eta_{\sigma_0}(x) + t\eta_{\sigma_1}(x))$ pour $x \in F_{\sigma_1} \setminus C_{\sigma_1}$ et $\zeta_x(t) = \{c_{\sigma}^n\} \cup U_{\sigma}^n$ pour tout t pour $x = c_{\sigma}^n \in C_{\sigma_1}$. Les inégalités (14) et (15) sont trivialement vérifiées dans les trois derniers cas.

Puisque F_{σ_1} est $4^{-m_{\sigma_0}}$ -discret, la relation (15) entraı̂ne que, pour tout $y = (1-t)b_{\sigma_0} + tb_{\sigma_1}$, g(y) est réunion d'une famille localement finie de compacts, donc est fermé. En outre, il résule de (15) que $d_H(F_{\sigma_0}, g(y)) < (9+1/4)\epsilon_{\sigma_0}$, ce qui, combiné avec (9) et (10) entraı̂ne que, pour tout $y \in [b_{\sigma_0}, b_{\sigma_1}]$,

$$d_H(g(y), f(b_{\sigma_0})) \le d_H(g(y), F_{\sigma_0}) + d_H(F_{\sigma_0}, g(b_{\sigma_0})) + d_H(g(b_{\sigma_0}), f(b_{\sigma_0})) < (9 + 1/4)\epsilon_{\sigma_0} + 1/16\epsilon_{\sigma_0} + 7\epsilon_{\sigma_0} < 17\epsilon_{\sigma_0}.$$
(16)

Enfin, la relation (14) entraı̂ne que, pour $y = (1 - t)b_{\sigma_0} + tb_{\sigma_1}$ et $y' = (1 - t')b_{\sigma_0} + t'b_{\sigma_1}$, nous avons $d_H(g(y), g(y')) \le 4^6 \cdot 9\epsilon_{\sigma_0}|t - t'|$, donc g est continue sur $[b_{\sigma_0}, b_{\sigma_1}]$.

Nous allons maintenant établir deux propriétés importantes de $g[b_{\sigma_0}, b_{\sigma_1}]$.

Affirmation 3. $g(y) \cap B(c_{\sigma}^n, 4^{-(m_{\sigma}+3)}) = \{c_{\sigma}^n\} \cup \bigcup_{j=1}^3 U_{\sigma}^n(j) \text{ quels que soient } y \in [b_{\sigma_0}, b_{\sigma_1}] \text{ et } c_{\sigma}^n \in C_{\sigma_1}.$

Démonstration. Pour tout simplexe σ' tel que $\sigma_0 \leq \sigma'$, nous avons $m_{\sigma'} \geq m_{\sigma_0} - 1$. Puisque F_{σ_0} est contenu dans l'ensemble $4^{-m_{\sigma_0}}$ -discret $E_{m_{\sigma_0}}$, les boules $\overline{B}(x, 4^{-(m_{\sigma_0}+2)})$ avec $x \in F_{\sigma_0}$ sont deux à deux disjointes. Pour $x \in F_{\sigma_1}$, $\bigcup \zeta_x(I)$ est contenu dans une boule $\overline{B}(x, \eta)$ avec $\eta = \eta_{\sigma_1}(x)$ si $x \notin C_{\sigma_0}$ et $\eta = 4^{-(m_{\sigma'}+3)}$ si $x = c_{\sigma'}^{n'}$ avec $\sigma_0 \leq \sigma'$. Par suite, $\overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma}+3)}) \cap \bigcup \zeta_x(I) = \emptyset$ si x est un point de F_{σ_1} distinct de c_{σ}^n .

Si x est un point de $F_{\sigma_0} \setminus F_{\sigma_1}$, alors $\bigcup \zeta_x(I)$ est contenu dans la réunion de $\overline{B}(x, \eta_x)$ $(\eta_x = \eta_{\sigma_0}(x) \text{ ou } 4^{-(m_{\sigma'}+3)})$, des boules $\overline{B}(z, 4^{-(m_{\sigma_0}+4)})$ avec $z \in \mathcal{E}_x$ et de \widehat{J}_x . Si z est un point de $E_{m_{\sigma_0}+1}$ distinct de c_{σ}^n , alors $d(z, c_{\sigma}^n) \geq 4^{-(m_{\sigma_0}+1)}$, donc $\overline{B}(x, 4^{-(m_{\sigma_0}+4)}) \cap \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma_0}+3)}) = \emptyset$. Si donc $\bigcup \zeta_x(I) \cap \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma_0}+3)}) \neq \emptyset$, alors $\widehat{J}_x \cap \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma_0}+3)}) \neq \emptyset$. Nous avons alors $x'_x = c_{\sigma}^n$. En effet, si $x'_x \neq c_{\sigma}^n$, alors $d(x'_x, c_{\sigma}^n) \geq 4^{-m_{\sigma_0}}$, et si w est un point de $\widehat{J} \cap \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma}+3)})$, alors $4^{-m_{\sigma_0}} - 4^{-(m_{\sigma}+3)} \geq 4^{-(m_{\sigma}+1)} - 4^{-(m_{\sigma}+3)} > 4^{-(m_{\sigma}+3)}$, d'où

$$d(x, x_x') = d(x, w) + d(w, x_x') \ge d(x, w) + d(x_x', c_\sigma^n) - d(c_\sigma^n, w) \ge$$

$$\ge d(x, w) + 4^{-m_{\sigma_0}} - 4^{-(m_{\sigma} + 3)} > d(x, w) + 4^{-(m_{\sigma} + 3)} \ge d(x, w) + d(w, c_\sigma^n) \ge d(x, c_\sigma^n),$$

et cela contredit la minimalité de $d(x, x'_x)$. Mais $d(x, c^n_\sigma) < 9\epsilon_{\sigma_0} \le 9\epsilon_\sigma$ d'après (12), donc le couple (c^n_σ, x) appartient à \mathcal{C}^n_σ , et l'arc $J(x, c^n_\sigma)$ contient un point $u \in U^n_\sigma(0) \subset F_{\sigma_1}$ tel que $d(c^n_\sigma, u) = 4^{-(m_\sigma+3)}$. L'arc \widehat{J}_x est donc contenu dans le sous-arc de $J(x, c^n_\sigma)$ d'extrémités x et u, donc est disjoint de $B(c^n_\sigma, 4^{-(m_\sigma+3)})$ (puisque $\xi(x, c^n_\sigma)$ est une isométrie). Le seul point x de F_{σ_0} tel que $\bigcup \zeta_x(I) \cap B(c^n_\sigma, 4^{-(m_\sigma+3)}) \ne \varnothing$ est donc c^n_σ , et l'affirmation résulte du fait que $\zeta_{c^n_\sigma}(t) \cap B(c^n_\sigma, 4^{-(m_\sigma+3)}) = \{c^n_\sigma\} \cup \bigcup_{j=1}^3 U^n_\sigma(j)$ pour tout $t \in I$.

Affirmation 4. Pour tout $y \in [b_{\sigma_0}, b_{\sigma_1}]$, tout simplexe σ vérifiant $\sigma_1 \leq \sigma$ et tout point $x' \in E_{m_{\sigma}} \setminus F_{\sigma_0}^*$, l'intervalle $]4^{-(m_{\sigma}+6)}, 4^{-(m_{\sigma_0}+4)}[$ contient au plus cinq réels s tels qu'il existe $w \in g(y)$ vérifiant d(x', w) = s.

Démonstration. Soit $y = (1-t)b_{\sigma_0} + tb_{\sigma_1}$. L'affirmation résulte des deux faits suivants:

- (a) L'intervalle $]0, 4^{-(m_{\sigma_0}+4)}[$ contient au plus un s tel qu'il existe $x \neq x'$ dans F_{σ_0} et $w \in \zeta_x(t)$ vérifiant d(x', w) = s.
- (b) Si $x' \in F_{\sigma_0}$, l'intervalle $]4^{-(m_{\sigma}+6)}, 4^{-(m_{\sigma_0}+4)}[$ contient au plus quatre s tel qu'il existe $w \in \zeta_{x'}(t)$ vérifiant d(x', w) = s.

Preuve de (a): Nous avons $m_{\sigma_0} \geq m_{\sigma_1} \geq m_{\sigma} \geq m_{\sigma_0} - 1$ et $m_{\sigma'} \geq m_{\sigma_0} - 1$ pour tout simplexe σ' tel que $\sigma_0 \leq \sigma'$. Si x' est un point de F_{σ_0} distinct de x', alors $d(x, x') \geq 4^{-m_{\sigma_0}}$. Si $x \in F_{\sigma_1}$, alors $\zeta_x(t)$ est contenu dans la boule $\overline{B}(x, \eta_x)$, où $\eta_x = \eta_{\sigma_1}(x) \leq 4^{-(m_{\sigma_1}+4)} \leq 4^{-(m_{\sigma_0}+3)}$ si $x \notin C_{\sigma_0}$ et $\eta_x = 4^{-(m_{\sigma'}+3)} \leq 4^{-(m_{\sigma_0}+2)}$ si $x = c_{\sigma'}^n \in C_{\sigma_0}$, donc $\zeta(t) \cap \overline{B}(x', 4^{-(m_{\sigma_0}+4)}) = \varnothing$.

Si $x \in F_{\sigma_0} \setminus F_{\sigma_1}$, alors $\zeta(t)$ est contenu dans $\overline{B}(x,\eta_x) \cup \bigcup \chi_x(I)$. Par construction de χ_x , $\chi_x(v)$ est contenu dans $\overline{B}(x,4^{-(m_{\sigma_0}+4)})$ si $v \leq t_0^+$ et est disjoint de $B(x',4^{-(m_{\sigma_0}+4)})$ si $t_0^+ \leq v \leq t_0^+ + \frac{1}{2}(t_1^- - t_0^+)$. La définition de ζ_x entraı̂ne donc que si $\zeta_x(t) \cap B(x',4^{-(m_{\sigma_0}+4)}) \neq \varnothing$, alors t > 3/4 et il existe $t' \in I$, ne dépendant que de t, tel que $\chi(t') \subset \zeta_x(t)$ et $\zeta_x(t) \cap B(x',4^{-(m_{\sigma_0}+4)}) = \chi_x(t') \cap B(x',4^{-(m_{\sigma_0}+4)})$. Mais $\chi_x(t')$ ne peut contenir un point w tel que $0 < d(x',w) < 4^{-(m_{\sigma_0}+4)}$ que si t' appartient à un intervalle de la forme $[t_i,t_i^+]$ ou $[t_i^-,t_i]$, et le $\kappa_{x,i}^\pm$ correspondant est une isométrie. Alors $\chi_x(t') = \{\kappa_{x,i}^\pm(\pm 4^{-m_{\sigma_0}+1}(t'-t_i))\}$ et la distance d'un tel point à x' ne dépend que de t', d'où (a).

Preuve de (b): Si $x' \in F_{\sigma_1} \setminus C_{\sigma_0}$, alors $\eta_{\sigma_1}(x') = 4^{-(m_{\sigma_1}+6)} \le 4^{-(m_{\sigma}+6)}$ puisque x' n'appartient pas à $F_{\sigma_0}^* \supset F_{\sigma_1}^*$. Alors $\zeta_{x'}(t)$ est contenu dans $\overline{B}(x', \eta_{\sigma_1}(x')) \subset \overline{B}(x', 4^{-(m_{\sigma}+6)})$.

Si $x' = c_{\sigma}^n \in C_{\sigma_1}$, alors $\zeta_{x'}(t) = \{c_{\sigma}^n\} \cup U_{\sigma}^n$ ne contient aucun point w tel que $d(x', w) \in]0, 4^{-(m_{\sigma}+4)}[\supset]0, 4^{-(m_{\sigma_0}+4)}[$.

Si $x' \in F_{\sigma_0} \setminus (F_{\sigma_1} \cup C_{\sigma_0})$, alors $\zeta_{x'}(t)$ est contenu dans $\overline{B}(x', \eta_{\sigma_0}(x')) \cup \bigcup \chi_{x'}(I)$ et $\eta_{\sigma_0}(x') = 4^{-(m_{\sigma_0}+6)} \le 4^{-(m_{\sigma}+6)}$ puisque $x' \notin F_{\sigma_0}^*$. Si w est un point de $\zeta_{x'}(t)$ tel que $4^{-(m_{\sigma}+6)} < d(x', w) < 4^{-(m_{\sigma_0}+4)}$, il existe donc un unique $t' \in I$ tel que $w \in \chi_{x'}(t')$. Un tel w ne peut exister que si $t' \in]0, t_0^+[$, et alors $w = \kappa_{x',0}(4^{-m_{\sigma_0}+1}t')$.

Si $x' = c_{\sigma}^n \in C_{\sigma_0} \cap (F_{\sigma_1} \setminus C_{\sigma_1})$, il existe $t', t'' \in I$ tels que $\zeta_{x'}(t) = \psi_{x'}^0(t') \cup \psi_{x'}^1(t'')$. Mais $\psi_{x'}^1(t'')$ est contenu dans $\overline{B}(x', 4^{-(m_{\sigma_1}+6)}) \subset \overline{B}(x', 4^{-(m_{\sigma}+6)})$, donc si $w \in \zeta_{x'}(t)$ vérifie $4^{-(m_{\sigma}+6)} < d(x', w) < 4^{-(m_{\sigma_0}+4)}$, alors w appartient à $\psi_{x'}^0(t')$. Par construction de $\psi_{x'}^0$, il existe alors $u \in U_{\sigma'}^n$ tel que $w = \varphi_u(t')$, d'où $d(x', w) = d(\varphi_u(1), \varphi_u(t')) = |1 - t'|d(x', u)$, et (b) résulte du fait que les nombres d(x', u) avec $u \in U_{\sigma'}^n$ ne peuvent prendre qu'au plus quatre valeurs distinctes.

Enfin, soit $x' = c_{\sigma}^n \in C_{\sigma_0} \setminus F_{\sigma_1}$. Les ensembles $\psi_{x'}^0(0) = \{c_{\sigma}^n\} \cup U_{\sigma}^n \text{ et } \chi_{x'}(t_0^+ + \frac{1}{2}(t_1^- - t_0^+))$ ne contiennent aucun point w tel que $0 < d(x', w) < 4^{-(m_{\sigma_0}+4)}$. Si $t \le 1/4$ ou $t \ge 1/2$, il y a un $t' \in I$ tel que tout point w vérifiant $0 < d(x', w) < 4^{-(m_{\sigma_0}+4)}$ appartienne à $\chi_{x'}(t')$. Un tel w ne peut exister que si $t' \in]0, t_0^+[$, et ce point est alors unique. Si 1/4 < t < 1/2, il y a un $t'' \in I$ tel que tout point w vérifiant $4^{-(m_{\sigma}+6)} < d(x', w) < 4^{-(m_{\sigma_0}+4)}$ appartienne à $\psi_{x'}(t'')$; comme dans le cas précédent, les distances correspondantes d(x', w) ne peuvent prendre plus de quatre valeurs distinctes.

Le lemme 2 nous permet de trouver une fonction continue $r: K \to 2^{K'^{(1)}}$ qui est l'identité sur $K'^{(1)}$ et telle que, pour tout $\alpha \in A$, tout simplexe τ de K' et tout $x \in \tau$, r(x) soit un sous-ensemble de $\tau^{(1)}$ contenant au plus $3^{k_{\alpha}-1}$ points. Pour $z \in K$, posons $g(z) = \bigcup \{g(y) \mid y \in r(z)\}$.

Etant réunion d'un nombre fini de fermés, g(z) est fermé. Si z appartient à $K'^{(1)}$, alors $r(z) = \{z\}$, et cette définition coïncide avec la définition initiale de g(z). Pour voir que g est continue, il suffit de vérifier que sa restriction à tout simplexe τ de K' est continue, ce qui résulte facilement du fait que sa restriction à $\tau^{(1)}$ est continue, donc uniformément continue (pour toute distance définissant la topologie de τ).

Soit z un point de K, et soit $\tau = [b_{\sigma_0}, \ldots, b_{\sigma_q}], \ \sigma_0 \leq \cdots \leq \sigma_q$, le plus petit simplexe de K' contenant z. Soit y un point de r(z), et soit $[b_{\sigma_i}, b_{\sigma_j}]$ un 1-simplexe de τ contenant y. Alors z appartient à $\overline{\operatorname{St}} \sigma_i$ et, en utilisant (6) et (16), nous obtenons

$$d_H(f(z), g(y)) \le d_H(f(z), f(b_{\sigma_i})) + d_H(f(b_{\sigma_i}), g(y)) < \epsilon_{\sigma_i} + 17\epsilon_{\sigma_i} \le \epsilon(f(z)).$$

Ceci étant vrai pour tout $y \in r(z)$, la définition de la distance de Hausdorff garantit que

$$d_H(f(z), g(z)) < \epsilon(f(z)). \tag{17}$$

La fonction g est donc ϵ -proche de f, et le lemme 1 garantit qu'elle est à valeurs dans \mathcal{H} . Montrons que la famille $\{g(K_{\alpha}) \mid \alpha \in A\}$ est discrète. Si ce n'est pas le cas, il existe une suite $\{\alpha_i\}_{i=1}^{\infty}$ d'éléments distincts de A et, pour tout i, un point $z_i \in K_{\alpha_i}$ tels que la suite $\{g(z_i)\}$ converge vers un élément H de \mathcal{H} . Soit $\tau_i = [b_{\sigma_0^i}, \ldots, b_{\sigma_{q_i}^i}], \ \sigma_0^i \leq \cdots \leq \sigma_{q_i}^i$, le plus petit simplexe de K_{α_i} contenant z_i , et soit $\epsilon_i = \epsilon_{\sigma_0^i}$. Quitte à passer à une sous-suite, nous pouvons supposer que $\{\epsilon_i\}$ converge vers $\epsilon_0 \in I$.

Nous avons $\epsilon_0 > 0$. En effet, il résulte de (5) et (2) que $\epsilon(f(z_i)) \le 2\inf\{\epsilon(f(z')) \mid z' \in \overline{\operatorname{St}} \sigma_0^i\} = 36\epsilon_i$, donc si $\{\epsilon_i\}$ tend vers 0, alors (17) entraı̂ne que $\{f(z_i)\}$ tend aussi vers H,

donc $\{\epsilon(f(z_i))\}\$ tend vers $\epsilon(H) > 0$, et l'inégalité $\epsilon_i \ge \frac{1}{36}\epsilon(f(z_i))$ contredit le fait que $\{\epsilon_i\}$ tend vers 0.

Puisque $\{\epsilon_i\}$ tend vers $\epsilon_0 > 0$, les entiers $m_{\sigma_0^i}$ ne peuvent prendre qu'un nombre fini de valeurs. Passant à une sous-suite, nous pouvons supposer qu'il existe un entier m_0 tel que $m_{\sigma_0^i} = m_0$ pour tout i. Pour tout i, $m_{\sigma_{q_i}^i}$ est alors égal soit à m_0 , soit à $m_0 - 1$, et nous pouvons aussi supposer qu'il existe un entier m_0' , égal à m_0 ou à $m_0 - 1$ tel que $m_{\sigma_{q_i}^i} = m_0'$ pour tout i.

Pour tout simplexe σ de K, posons

$$C_{\sigma}^{\text{pair}} = \{ c_{\sigma}^{4p} \, | \, p \ge 0 \} \quad C_{\sigma}^{\text{imp}} = \{ c_{\sigma}^{4p+2} \, | \, p \ge 0 \} \quad C_{\sigma}^{\text{dim}} = \{ c_{\sigma}^{n} \, | \, n \le 2k_{\sigma} \}.$$

Affirmation 5. Il existe i_0 tel que, quels que soient $i, i' > i_0$, on ait $C_{\sigma_{q_i}^i}^{\text{pair}} \subset C_{\sigma_0^{i'}}^{\text{pair}}$, $C_{\sigma_{q_i}^i}^{\text{imp}} \subset C_{\sigma_0^{i'}}^{\text{imp}}$, $C_{\sigma_q^i}^{\text{imp}} \subset C_{\sigma_q^i}^{\text{dim}}$.

Démonstration. Puisque la suite $\{g(z_i)\}$ converge, nous pouvons trouver i_0 tel que $d_H(g(z_i), g(z_{i'})) < 4^{-(m_0+6)}$ quels que soient $i, i' > i_0$. Fixons $i, i' > i_0$ et un point $c_{\sigma}^n \in C_{\sigma_{q_i}^i}$. Ce point c_{σ}^n appartient à tous les ensembles $C_{\sigma_0^i}, \ldots, C_{\sigma_{q_i}^i}$, donc l'affirmation 3 est applicable à c_{σ}^n et à tout point de $\tau_i^{(1)}$, ce qui garantit que

$$g(z_i) \cap B(c_{\sigma}^n, 4^{-(m_{\sigma}+3)}) = \{c_{\sigma}^n\} \cup \bigcup_{j=1}^3 U_{\sigma}^n(j).$$
 (18)

L'ensemble $\bigcup_{j=1}^3 U_{\sigma}^n(j)$ n'est pas vide, et si u est l'un de ses points, alors $d(u, c_{\sigma}^n)$ est l'un des nombres $\frac{1}{2}4^{-(m_{\sigma}+3)}$, $\frac{4}{6}4^{-(m_{\sigma}+3)}$ et $\frac{5}{6}4^{-(m_{\sigma}+3)}$. Puisque $d_H(g(z_i), g(z_{i'})) < 4^{-(m_0+6)}$, il existe $y \in r(z_{i'})$ et un $w \in g(y)$ tels que $d(u, w) < 4^{-(m_0+6)} \le 4^{-(m_{\sigma}+6)}$. Puisque $\sigma_0^i \le \sigma$, nous avons $m_0 \ge m_{\sigma} \ge m_0 - 1$, donc le point w doit vérifier

$$4^{-(m_{\sigma}+4)} + 4^{-(m_{\sigma}+5)} < d(c_{\sigma}, w) < 4^{-(m_{\sigma}+3)} - 4^{-(m_{\sigma}+5)}.$$
(19)

Fixons un $y \in r(z_{i'})$ pour lequel il existe $w \in g(y)$ vérifiant (19). Pour simplifier les notations, nous noterons $[b_{\sigma_0}, b_{\sigma_1}]$ le simplexe de $\tau_{i'}^{(1)}$ contenant y, et reprendrons les notations utilisées dans la construction de $g|[b_{\sigma_0}, b_{\sigma_1}]$. Si t est tel que $y = (1-t)b_{\sigma_0} + tb_{\sigma_1}$, il existe $x \in F_{\sigma_0}$ tel que $w \in \zeta_x(t)$.

Puisque $\sigma_0^{i'} \leq \sigma_0 \leq \sigma_1$, nous avons $m_0 \geq m_{\sigma_0} \geq m_{\sigma_1} \geq m'_0 \geq m_0 - 1$, et $m_\sigma \geq m_0 - 1$, donc $\overline{B}(c_\sigma^n, 4^{-(m_\sigma+3)}) \cap \overline{B}(x, 4^{-(m'_0+2)}) = \emptyset$ si $c_\sigma^n \neq x \in F_{\sigma_0}$. Par conséquent, si x est un point de F_{σ_0} distinct de c_σ^n et tel que $\zeta_x(t)$ contienne un point w vérifiant (19), alors x appartient à $F_{\sigma_0} \setminus F_{\sigma_1}$, et il existe $s \in I$ tel que $w \in \chi_x(s) \subset \zeta_x(t) \subset g(y) \subset g(z_{i'})$. Si x' est un point de $E_{m_{\sigma_0}+1}$ distinct de c_σ^n , alors $d(c_\sigma^n, x') \geq 4^{-(m_{\sigma_0}+1)} \geq 4^{-(m_\sigma+2)}$. Le point w n'est donc dans aucune boule $\overline{B}(x', 4^{-(m_{\sigma_0}+4)})$ avec $c_\sigma^n \neq x' \in E_{m_{\sigma_0}+1}$, et la construction de χ_x garantit que $\chi_x(s)$ contient un arc $\overline{ww'}$ où w' est soit égal à \hat{x} , soit tel qu'il existe $x' \in E_{m_{\sigma_0}+1}$ avec $d(x', w') = 4^{-(m_{\sigma_0}+4)}$. Mais le point \hat{x} ne peut vérifier $4^{-(m_{\sigma_0}+4)} < d(c_\sigma^n, \hat{x}) < 4^{-(m_\sigma+3)}$. En effet, comme \hat{x} appartient à $F_{\sigma_1} \cup (\bigcup_{n' \in N_0} \bigcup_{\sigma_1 \leq \sigma'} U_{\sigma'}^{n'})$, il devrait exister un point $c_{\sigma'}^{n'} \in C_{\sigma_1} \subset F_{\sigma_1}$ tel que $d(\hat{x}, c_\sigma^{n'}) \leq 4^{-(m_{\sigma_0}+2)}$, et la seule possibilité est $c_\sigma^{n'} = c_\sigma^n$. L'affirmation 3 garantit qu'alors $d(\hat{x}, c_\sigma^n) = 4^{-(m_\sigma+3)}$ (puisque, par construction, c_σ^n appartient à $E_{m_\sigma} \setminus E_{m_{\sigma-1}}$ et $c_\sigma^{n'}$ à $E_{m_{\sigma'}} \setminus E_{m_{\sigma'}-1}$). Nous avons donc deux possibilités: $d(c_\sigma^n, w') \geq 4^{-(m_\sigma+3)}$ ou $d(c_\sigma^n, w') = 4^{-(m_{\sigma_0}+4)}$. Dans le premier cas, $\overline{ww'}$ contient un point

w'' tel que $d(c_{\sigma}^{n}, w'') = 4^{-(m_{\sigma}+3)} - 4^{-(m_{\sigma}+5)}$; ce point appartient à $g(z_{i'})$, et (18) entraı̂ne que $d_{H}(g(z_{i'}), g(z_{i})) \ge d(w'', g(z_{i})) \ge 4^{-(m_{\sigma}+5)} \ge 4^{-(m_{0}+6)}$.

Dans le deuxième cas, nous avons, en utilisant (18).

$$d_H(g(z_{i'}), g(z_i)) \ge d(w', g(z_i)) = 4^{-(m_{\sigma_0} + 4)} > 4^{-(m_0 + 6)}.$$

Ces inégalités contredisent le choix de i_0 , donc il n'existe pas de point $x \neq c_{\sigma}^n$ tel que $\zeta_x(t)$ contienne un point w vérifiant (19). Nous avons donc $x = c_{\sigma}^n$. Examinons les diverses possibilités:

 $x = c_{\sigma}^n \in F_{\sigma_1} \setminus C_{\sigma_0}$. Alors $\zeta_x(t) \subset \overline{B}(x, \eta_{\sigma_1}(x)) \subset \overline{B}(x, 4^{-(m_{\sigma_1}+4)}) \subset \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma}+4)})$. Impossible, car aucun point de $\zeta_x(t)$ ne vérifie (19).

 $x = c_{\sigma}^{n} \in F_{\sigma_{0}} \setminus (F_{\sigma_{1}} \cup C_{\sigma_{0}})$. Si $t \leq 1/4$, alors $\zeta_{x}(t)$ contient la boule $\overline{B}(x, \eta_{\sigma_{0}}(x))$ avec $\eta_{\sigma_{0}}(x) \geq 4^{-(m_{\sigma_{0}}+6)} \geq 4^{-(m_{\sigma_{0}}+6)}$. Si w' est un point tel que $d(x, w') = 4^{-(m_{\sigma_{0}}+6)}$, alors w' appartient à g(y) et, en utilisant (18), nous obtenons $d_{H}(g(z_{i'}), g(z_{i})) \geq d(w', g(z_{i})) \geq 4^{-(m_{0}+6)}$, donc ce cas est impossible. Si t > 1/4 et si $\zeta_{x}(t)$ contient un point w vérifiant (19), le raisonnement fait quand $x \neq c_{\sigma}^{n}$ s'applique à nouveau: $\zeta_{x}(t)$ doit contenir un arc $\overline{ww'}$ avec soit $d(x, w') = 4^{-(m_{\sigma_{0}}+4)}$, soit $d(w', x) \geq 4^{-(m_{\sigma}+3)}$, ce qui mène encore à une contradiction.

 $x = c_{\sigma}^n \in C_{\sigma_1}$. Alors c_{σ}^n est aussi de la forme $c_{\sigma'}^{n'}$ avec $\sigma_1 \leq \sigma'$, et $\zeta_x(t) = c_{\sigma'}^{n'} \cup U_{\sigma'}^{n'}$ pour tout t. Le choix des c_{σ}^n garantit que $m_{\sigma} = m_{\sigma'}$, donc

$$\zeta_x(t) \cap B(c_{\sigma}^n, 4^{-(m_{\sigma}+3)}) = \{c_{\sigma}^n\} \cup \bigcup_{j=1}^3 U_{\sigma'}^{n'}(j).$$

 $x = c_{\sigma}^n \in C_{\sigma_0} \cap (F_{\sigma_1} \setminus C_{\sigma_1})$, donc $c_{\sigma}^n = c_{\sigma'}^{n'}$ avec $\sigma_0 \leq \sigma'$. Si $t \geq 1/2$, alors $\zeta_x(t)$ contient $\psi_x^1(0) = \overline{B}(x, \eta_{\sigma_1}(x))$; comme nous l'avons remarqué, ce cas est impossible. Si t < 1/2, $\zeta_x(t) = \psi_x^0(0) \cup \psi_x^1(1-2t)$. Mais $\psi_x^1(1-2t)$ est contenu dans $\overline{B}(x, 4^{-(m_{\sigma}+4)})$ et $\psi_x^0(0) = \{c_{\sigma'}^{n'}\} \cup U_{\sigma'}^{n'}$. Ici encore, $m_{\sigma'} = m_{\sigma}$, et nous avons

$$\zeta_x(t) \cap \left(B(c_{\sigma}^n, 4^{-(m_{\sigma}+3)}) \setminus \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma}+4)}) \right) = \bigcup_{i=1}^3 U_{\sigma'}^{n'}(j).$$

 $x = c_{\sigma}^n \in C_{\sigma_0} \setminus F_{\sigma_1}$, donc $x = c_{\sigma'}^{n'}$ avec $\sigma_0 \leq \sigma'$. Il existe alors un plus petit $\hat{t} < 1/4$ tel que $\chi_x(4\hat{t}(t_0^+ + \frac{1}{2}(t_1^- - t_0^+))$ contienne $\kappa_{x,0}^+(4^{-(m_{\sigma_0}+4)})$. Si $t \geq \hat{t}$, nous sommes dans la même situation que quand $x \neq c_{\sigma}^n$: $\zeta_x(t)$ contient un arc $\overline{ww'}$ avec $d(x, w') = 4^{-(m_{\sigma_0}+4)}$ ou $d(w', x) \geq 4^{-(m_{\sigma_0}+3)}$, ce qui est impossible. Si $t < \hat{t}$, alors

$$\zeta_x(t) \cap \left(B(c_{\sigma}^n, 4^{-(m_{\sigma}+3)}) \setminus \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma}+4)}) \right) = \psi_x^0(0) \cap \left(B(c_{\sigma}^n, 4^{-(m_{\sigma}+3)}) \setminus \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma}+4)}) \right) = \bigcup_{j=1}^3 U_{\sigma'}^{n'}(j).$$

Comme nous l'avons remarqué, l'ensemble $\bigcup_{j=1}^3 U_{\sigma'}^{n'}(j)$ ne dépend pas du choix du simplexe σ' tel que $\sigma_0^{i'} \leq \sigma'$ et $c_{\sigma}^n = c_{\sigma'}^{n'}$. Il résulte de ce qui précède que, pour tout point $y \in r(z_{i'})$ pour lequel il existe $w \in g(y)$ vérifiant (19), il existe $c_{\sigma'}^{n'} \in C_{\sigma_0^{i'}}$ tel que

$$g(y) \cap \left(B(c_{\sigma}^n, 4^{-(m_{\sigma}+3)}) \setminus \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma}+4)})\right) = \bigcup_{j=1}^3 U_{\sigma'}^{n'}(j),$$

d'où

$$g(z_{i'}) \cap \left(B(c_{\sigma}^n, 4^{-(m_{\sigma}+3)}) \setminus \overline{B}(c_{\sigma}^n, 4^{-(m_{\sigma}+4)})\right) = \bigcup_{j=1}^3 U_{\sigma'}^{n'}(j).$$
 (20)

Compte tenu du fait que $m_{\sigma} = m_{\sigma'}$ et de la définition des $U_{\sigma}^{n}(j)$, si $d_{H}(g(z_{i}), g(z_{i'})) < 4^{-(m_{0}+6)}$, les relations (18) et (20) ne peuvent être vérifiées que si $U_{\sigma}^{n}(j) = U_{\sigma'}^{n'}(j)$ pour $1 \leq j \leq 3$, et l'affirmation résulte alors de la définition des ensembles $U_{\sigma}^{n}(2)$ et $U_{\sigma}^{n}(3)$.

Affirmation 6. Soient $i, i' > i_0$. Si n, n' sont deux entiers pairs tels que n + 2 < n', alors $\delta(x) < \delta(x')$ quels que soient $x \in C^n_{\sigma^i_0}$ et $x' \in C^{n'}_{\sigma^{i'}_0}$.

Démonstration. Puisque C^n_{σ} est contenu dans F^n_{σ} , l'affirmation 2 entraı̂ne que, pour tout simplexe σ de K et tout couple d'entiers pairs n_0 , n_1 vérifiant $n_0 < n_1$, nous avons $\delta(x) < \delta(x')$ quels que soient $x \in C^{n_0}_{\sigma}$ et $x' \in C^{n_1}_{\sigma}$.

Supposons l'affirmation fausse, et soit n le plus petit entier pair pour lequel il existe n'>n+2 et des points $x\in C^n_{\sigma^i_0}$ et $x'\in C_{\sigma^{i'}_0}$ vérifiant $\delta(x)\geq \delta(x')$. Supposons que n=4p, et prenons $x''\in C^{4p+2}_{\sigma^{i'}_{q_{i'}}}\subset C^{4p+2}_{\sigma^{i'}_0}$. Puisque 4p+2< n', nous avons $\delta(x'')<\delta(x')$.

L'affirmation 5 entraı̂ne qu'il existe p' tel que x'' appartienne à $C_{\sigma_0^i}^{4p'+2}$, et le choix de n garantit que $p' \geq p$. Nous avons alors $\delta(x'') > \delta(x) \geq \delta(x')$, ce qui est contradictoire.

Le cas où n = 4p + 2 se traite de façon analogue.

Soient $i, i' > i_0$. Pour $n \in N_0$, prenons un point $c_{\sigma}^n \in C_{\sigma_{i}^n}^n$. L'affirmation 5 entraı̂ne l'existence d'un n' tel que c_{σ}^n appartienne à $C_{\sigma_{i}^{n'}}^{n'}$, et en outre, si n = 4p (resp. n = 4p + 2), alors n' = 4p' (resp. n' = 4p' + 2). Mais l'affirmation 6 entraı̂ne que $|n - n'| \le 2$, donc n = n'. Si c_{σ}^n appartient à $C_{\sigma_{i}^n}^{\dim}$, i.e. $n \le 2k_i$, alors c_{σ}^n appartient aussi à $C_{\sigma_{i}^{i'}}^{\dim}$, donc $n \le 2k_{i'}$. Nous avons donc $k_i \le k_{i'}$ et, par symétrie, $k_i = k_{i'}$. La dimension k_i du complexe K_{α_i} ne dépend donc pas de i si $i > i_0$; nous noterons k_0 cette dimension.

Si $i \neq i'$, il existe un entier p tel que $N_{\alpha_i} \setminus N_{\alpha_{i'}}$ contienne $\{6p+1, 6p+3, 6p+5\}$. Soit x_0 un point de $\widetilde{F}_{\sigma_{q_i}}^{6p+3}$. Pour tout $j \leq q_i$, le point x_0 appartient à $F_{\sigma_j^i}^{6p+3}$, donc $\eta_{\sigma_j^i}(x_0) = 4^{-(m_{\sigma_j^i}+4)} \geq 4^{-(m_0+4)}$. Il en résulte que, pour tout $y \in \tau_i^{(1)}$, le point g(y) contient la boule $\overline{B}(x_0, 4^{-(m_0+4)})$, donc $g(z_i)$ contient cette boule.

Pour tout $j' \leq q_{i'}$, le point x_0 n'appartient pas à $F^*_{\sigma^{i'}_{j'}}$. En effet, si x' est un point de $F^*_{\sigma^{i'}_{j'}}$, il existe $n \in N_{\alpha_{i'}}$ tel que $x' \in F^n_{\sigma^{i'}_{j'}}$. Etant impair, n vérifie soit $n \geq 6p+7$, soit $n \leq 6p-1$. Soit $x_1 = c^{6p+4}_{\sigma^i_{q_i}} \in \widetilde{F}^{6p+4}_{\sigma^i_{q_i}}$. Nous avons $\delta(x_0) < \gamma_{6p+4}(f(b_{\sigma^i_{q_i}})) < \delta(x_1)$.

Comme nous l'avons remarqué plus haut, x_1 appartient à $C_{\sigma_0^{i'}}^{6p+4} \subset F_{\sigma_0^{i'}}^{6p+4}$, et l'affirmation 2 entraı̂ne que $\delta(x') > \delta(x_1) > \delta(x_0)$ pour $x' \in F_{\sigma_0^{i'}}^n \supset F_{\sigma_{j'}^{i'}}^n$ avec $n \geq 6p+7$. Un argument analogue montre que $\delta(x') < \delta(x_0)$ pour $x' \in F_{\sigma_{j'}^{i'}}^n$ avec $n \leq 6p-1$.

Puisque x_0 appartient à $E_{m'_0}$ et que $m_{\sigma^{i'}_{j'}} \geq m'_0$ pour tout $j' \leq q_{i'}$, l'affirmation 4 est applicable à x_0 et à tout 1-simplexe de $\tau_{i'}$. Pour tout $j' \leq q_{i'}$, nous avons $m_0 \leq m_{\sigma^{i'}_{j'}} \leq m_0 - 1$, donc si $[b_{\sigma^{i'}_{j'}}, b_{\sigma^{i'}_{j''}}]$ est un 1-simplexe contenu dans $\tau_{i'}$, alors $]4^{-(m'_0+6)}, 4^{-(m'_0+4)}[$, et l'affirmation 4 entraı̂ne que, pour tout $y' \in \tau^{(1)}_{i'}$, l'intervalle

 $]4^{-(m_0+5)}, 4^{-(m_0+4)}[$ contient au plus 5 réels s tels qu'il existe $x' \in g(y')$ vérifiant $d(x', x_0) = s$. Puisque $K_{\alpha_{i'}}$ est de dimension $k_0, r(z_{i'})$ contient au plus 3^{k_0-1} points, donc l'intervalle $]4^{-(m_0+5)}, 4^{-(m_0+4)}[$ contient au plus $5 \cdot 3^{k_0-1}$ nombres s pour lesquels il existe $x' \in g(z_i)$ tel que $d(x', x_0) = s$. Nous pouvons donc trouver un intervalle $]v_1, v_2[\subset]4^{-(m_0+5)}, 4^{-(m_0+4)}[$ de longueur $v_2 - v_1 \ge (4^{-(m_0+4)} - 4^{-(m_0+5)})/5 \cdot 3^{k_0-1} = \ell$ ne contenant aucun nombre s tel qu'il existe $x' \in g(z_{i'})$ avec $d(x', x_0) = s$. Soit $v_3 = \frac{v_1 + v_2}{2}$. La boule $\overline{B}(x_0, 4^{-(m_0+4)})$ contient un point w tel que $d(w, x_0) = v_3$, et ce point appartient à $g(z_i)$. Pour tout $x' \in g(z_{i'})$, nous avons $d(w, x') \ge |d(w, x_0) - d(x', x_0)| \ge \ell/2$, d'où $d_H(g(z_i), g(z_{i'})) \ge d(w, g(z_{i'})) \ge \ell/2$. Ceci étant vrai quels que soient les entiers distincts $i, i' > i_0$, la suite $\{g(z_i)\}$ ne peut converger. Cette contradiction achève la démonstration du lemme 4, donc aussi celle du théorème. \square

REFERENCES

- 1. Curtis D. Hyperspaces of noncompact metric spaces// Compositio Math. 1980. V.40. P. 139-152.
- 2. Curtis D., Nguyen To Nhu. Hyperspaces of finite susets which are homeomorphic to \aleph_0 -dimensional linear metric spaces// Topology Appl. 1985. V.19. P. 251–260.
- 3. Kubiś W., Sakai K. Hausdorff hyperspaces of \mathbb{R}^n and there dense subspaces// J. Math. Soc. Japan. 2008. P. 193–217.
- 4. Kurihara M., Sakai K. Yaguchi M., Hyperspaces with the Hausdorff metric and uniform ANR's// J. Math. Soc. Japan. 2008. V.57. P. 523–535.
- 5. Toruńczyk H. Characterizing Hilbert space topology// Fund. Math. 1981. V.111. P. 247-272.
- Toruńczyk H. A correction of two papers concening Hilbert manifolds// Fund. Marh. 1985. V.125. P. 89–93.

Université Paris 6, Institut de mathématiques de Jussieu cauty@math.jussieu.fr

Received 14.06.10

 $Revised\ 15.12.10$