Reference |
1. C. Andrean Cazacu, Moduli inequalities for quasiregular mappings, Ann. Acad. Sci. Fenn. Math. 2 (1976),
17–28.
2. E. F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, New York, 1965.
3. C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, M. Vuorinen, On conformal dilatation in space, Intern.
Journ. Math. and Math. Scie. 22 (2003), 1397–1420.
4. B. V. Bojarski, V. Ya. Gutlyanskii, V.I. Ryazanov, General Beltrami equations and BMO, Ukr. Math.
Bull. 5 (2008), ¹3, 305–326.
5. M. Cristea, Open discrete mappings having local $ACL^n$ inverses, Compl. Var. and Ellipt. Equat. 55
(2010), ¹1-3, 61–90.
6. A. Golberg, Differential properties of $(\alpha;Q)$–homeomorphisms, Further Progress in Analysis, World
Scientific Publ. (2009), 218–228.
7. F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962),
353–393.
8. F. W. Gehring, O. Lehto, On the total differentiability of functions of a complex variable, Ann. Acad.
Sci. Fenn. Math. AI. 272 (1959), 1–9.
9. V. Kruglikov, Capacity of condensers a nd spatial mappings quasiconformal in the mean, Mat. Sb. 130
(1986), ¹2, 185–206. (In Russian)
10. K. Kuratowski, Topology, V.1, Academic Press, New York and London, 1966.
11. O. Martio, S. Rickman, J. Vaisala, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A1
448 (1969), 1–40.
12. O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Science
+ Business Media, LLC, New York, 2009.
13. V. Maz’ya, Sobolev classes, Springer, Berlin – New York, 1985.
14. Yu. G. Reshetnyak, Generalized derivatives and differentiability a.e. (In Russian), Mat. Sb. 75 (1968),
¹3, 323–334. (In Russian)
15. Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monographs 73, Amer.
Math. Soc., Providence, RI, 1989.
16. S. Rickman, Quasiregular Mappings, Springer, Berlin etc., 1993.
17. S. Saks, Theory of the Integral, Dover Publ. Inc., New York, 1964.
18. J. Vaisala, Lectures on $n$–dimensional quasiconformal mappings, Lecture Notes in Math. 229., Springer–
Verlag, Berlin etc., 1971.
19. G. T. Whyburn, Analytic topology, American Mathematical Society, Rhode Island, 1942.
20. R. R. Salimov, E. A. Sevost’yanov, ACL and differentiability of the open discrete ring mappings, Complex
Variables and Elliptic Equations 55 (2010), ¹1–3, 49–59.
|