
Математичнi Студiї. Т.35, №1 Matematychni Studii. V.35, No.1

УДК 517.5

R. R. Salimov, E. A. Sevost’yanov

ACL AND DIFFERENTIABILITY OF OPEN DISCRETE RING

(p,Q)-MAPPINGS

R. R. Salimov, E. A. Sevost’yanov. ACL and differentiability of open discrete ring (p,Q)-
mappings, Mat. Stud. 35 (2011), 28–36.

We study the so–called (p,Q)-mappings which naturally generalize quasiregular mappings.
It is proved that open discrete ring (p,Q)-mappings are differentiable almost everywhere as
p > n− 1 and locally integrable Q. Furthermore, we prove that open discrete (p,Q)-mappings
belong to the class ACL in Rn and f ∈W 1,1

loc the same conditions on p and Q.

Р. Р. Салимов, Е. А. Севостьянов. ACL и дифференцируемость открытых дискретных
(p,Q)-отображений // Мат. Студiї. – 2011. – Т.35, №1. – C.28–36.

Изучаются так называемые (p,Q)-отображения, являющиеся естественным обобще-
нием квазирегулярных отображений. Доказано, что открытые дискретные (p,Q)-отобра-
жения дифференцируемы почти всюду при p > n− 1 и локально интегрируемой функции
Q. Более того, доказано, что открытые дискретные (p,Q)-отображения принадлежат клас-
су ACL в Rn и f ∈W 1,1

loc при тех же условиях на p и Q.

1. Introduction. Recall that, given a family of paths Γ in Rn, a Borel function ρ : Rn →
[0,∞] is called admissible for Γ, abbr. ρ ∈ admΓ, if∫

γ

ρds ≥ 1 (1)

for all γ ∈ Γ. Given p > 0, the p-modulus of Γ is the quantity

Mp(Γ) = inf
ρ∈admΓ

∫
G

ρp(x)dm(x). (2)

Let D be a domain in Rn, n ≥ 2, and f : D → Rn a Q-quasiconformal mapping. Then
necessarily

Mn (fΓ) ≤
∫
D

KI(x, f) · ρn(x)dm(x) (3)

for every family Γ of paths in D and every admissible function ρ for Γ, see e.g. [3], where
KI(x, f) stands for the well–known inner dilatation of f at x.

Given a domain D and two sets E and F in Rn, n ≥ 2, Γ(E,F,D) denotes the family of
all paths γ : [a, b]→ Rn which join E and F in D, i.e., γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for
a < t < b. Let r0 = dist(x0, ∂D) and Q : D → [0 ,∞] is a measurable function. Set

A(r1, r2, x0) = {x ∈ Rn : r1 < |x− x0| < r2},
Si = S(x0, ri) = {x ∈ Rn : |x− x0| = ri}, i = 1, 2.
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One can replace the above necessary condition (3) with the following, equivalent by Gehring’s
result [7], inequality

Mn (f (Γ (S1, S2, A))) ≤
∫

A(r1,r2,x0)

KI(x, f) · ρn (|x− x0|) dm(x) (4)

for every point x0 ∈ D and every r1, r2, such that 0 < r1 < r2 < r0 = dist (x0, ∂D) . The
above inequalities (3) and (4) together with the modulus technique are the powerful tools
for the study of quasiconformal (quasiregular) mappings in the plane and in space, see e.g.
[8], [15], [16] and [18]. In order to extend as much as possible the set of maps for the study
of which the well developed modulus technique can be also applied, we replace in (3) (or in
(4)) the dilatation KI(x, f) with a measurable function Q(x), say of the class L1

loc(D), and
then declare the inequality

Mp(fΓ) ≤
∫
D

Q(x) · ρp(x)dm(x) (5)

or
Mp (f (Γ (S1, S2, A))) ≤

∫
A

Q(x) · ηp(|x− x0|)dm(x) (6)

for every measurable function η : [0,∞] → [0,∞] for which
∫ r2
r1
η(t)dt ≥ 1. The above

inequalities (5) and (6) are necessary conditions for the mapping f : D → Rn to belong
to the class of the Q-homeomorphisms as p = n, or the ring Q-homeomorphisms, respecti-
vely, see [12]. See also the conception of the weighted modulus, [1], applications of the
Q-homeomorphisms, cf. [4] and [5]. The so-called (p,Q)-homeomorphisms, which defined as
homeomorphisms satisfying the (5), were presented and studied by A. Golberg, see, e.g., [6].

A mapping f : D → Rn is said to be a (p,Q)-mapping if f satisfies (5) for every ρ ∈ admΓ.
A mapping f : D → Rn is said to be a ring (p,Q)-mapping if f satisfies (6) for every x0 ∈ D
and every measurable function η : [0,∞] → [0,∞] for which

∫ r2
r1
η(t)dt ≥ 1. Note that by

definition, every K-quasiconformal (or K-quasiregular) mapping satisfies (6) and (5) with
p = n and Q(x) ≡ K. Our paper is devoted to the study of mappings having unbounded
Q(x) in above definitions and p 6= n.

Recall that a mapping f : D → Rn is said to be absolutely continuous on lines, write
f ∈ ACL, if all coordinate functions f = (f1, . . . , fn) are absolutely continuous on almost
all straight lines parallel to the coordinate axes for any n-dimensional parallelepiped P with
edges parallel to the coordinate axes and such that P ⊂ D.

It is well–known that quasiconformal and quasiregular mappings are absolutely conti-
nuous on lines, see e.g. Corollary 31.4 in [18], Lemma 4.11 and Theorem 4.13 in [11], and
differentiable a.e., see e.g. Corollary 32.2 in [18], Theorem 2.1 Ch. I in [16] and Theorem 4 in
[14]. Moreover, in the plane case, every ACL-homeomorphism is differentiable a.e., see [8].
However, above results did not give any information about differentiability (or ACL) for
more general mappings having non–bounded dilatation.

The goal of the present paper is to prove the following:
I. Open discrete ring (p,Q)-mappings f : D → Rn with Q ∈ L1

loc and p > n − 1 are
differentiable a.e. in D and satisfy the inequality ‖f ′(x)‖p ≤ C·|J(x, f)|1−n+pQn−1(x) a.e.
where a constant C depends only on n and p.

II. Open discrete (p,Q)-mappings f : D → Rn with Q ∈ L1
loc and p > n− 1 belong to the

class ACL in D and, consequently, to the Sobolev class W 1,1
loc .
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Above results were firstly stated by the authors in the paper [20] for the case p = n.
Moreover, for every p > n − 1, p 6= n, the ACL-property and differentiability a.e. of the
homeomorphisms satisfying the (5) were stated by A. Golberg in [6]. In the present paper we
prove the same properties of ACL and differentiability for more general mappings, admitting
the branch points and satisfying the (5) or (6) as p > n − 1, p 6= n, which are supposed to
be open and discrete, only.

2. Preliminaries. Let D be a domain in Rn, n ≥ 2. A mapping f : D → Rn is said to be
discrete if the preimage f−1 (y) of every point y ∈ Rn consists of isolated points, and an open
if the image of every open set U ⊆ D is open in Rn. The notation G b D means that G is
a compact subset of D. We suppose that f : D → Rn is continuous and sense–preserving, i.e.
a topological index µ(y, f,G) > 0 for any G b D and y ∈ f(G) \ f (∂G) . A neighborhood of
a point x or a set A is called an open set B such that x ∈ IntB or A ∈ IntB, correspondingly.
Suppose that x ∈ D has a connected neighborhood G such that G∩f−1 (f(x)) = {x} . Then
µ (f(x), f, G) is well–defined and independent of the choice of G for discrete open f and
denoted by i(x, f). For f : D → Rn and E ⊂ D, we use the multiplicity functions

N(y, f, E) = card {x ∈ E : f(x) = y} , N(f, E) = sup
y∈Rn

N(y, f, E).

In what follows, B(x0, r) = {x ∈ Rn : |x− x0| < r} and Rn = Rn ∪ {∞}. The above defini-
tions can be extended in a natural way to mappings f : D → Rn.

The following notion is motivated by the Gehring ring definition of quasiconformality,
see [7], and generalizes a notion of ring Q-homeomorphism, see Ch. VII in [12]. In what
follows p ≥ 1.

A homeomorphism f : D → Rn is said to be a ring (p,Q)-homeomorphism at a point
x0 ∈ D, if

Mp (f (Γ (S1, S2, A))) ≤
∫
A

Q(x) · ηp(|x− x0|)dm(x) (7)

holds for every ring A = A(r1, r2, x0), 0 < r1 < r2 < r0 and every measurable function
η : (r1, r2)→ [0,∞] such that ∫ r2

r1

η(r)dr ≥ 1.

If (7) holds for every x0 ∈ D, f is said to be a ring (p,Q)-homeomorphism. In general case,
every (p,Q)-homeomorphism f : D → Rn is a ring (p,Q)-homeomorphism, but the inverse
conclusion, generally speaking, is not true. In fact, it can be constructed some examples of
ring (p,Q)-homeomorphisms as p = n in a fixed point x0 such that Q(x) ∈ (0, 1) on some
set for which x0 is a density point, see e.g. Ch. XI in [12].

Let D ⊂ Rn, n ≥ 2, be a domain and Q : D → [0,∞] be a measurable function. We
say that a continuous sense–preserving mapping f : D → Rn is a ring (p,Q)-mapping in
D if (7) holds for every x0 ∈ D. Note that correspondingly to these definitions, the class
of so–called (p,Q)-mappings which consists of the continuous sense–preserving mappings
satisfying condition (5) is included in the class of ring (p,Q)-mappings.

Correspondingly to [11] or [16], a condenser is a pair E = (A,C) where A ⊂ Rn is open
and C is non–empty compact set contained in A . A condenser E = (A,C) is said to be in
a domain G if A ⊂ G. For a given condenser E = (A,C) , we set

cappE = capp (A,C) = inf
u∈W0(E)

∫
A

|∇u|pdm(x) (8)
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where W0(E) = W0(A,C) is the family of non–negative functions u : A→ R1 such that (1)
u is continuous and finite on A, (2) u(x) ≥ 1 for x ∈ C, and (3) u is ACL. In the above
formula

|∇u| =
( n∑
i=1

(∂iu)2
)1/2

.

The quantity cappE is called the p-capacity of the condenser E.
We say that a family of curves Γ1 is minorized by a family Γ2, denoted by Γ1 > Γ2, if

for every curve γ ∈ Γ1 there is a subcurve that belongs to the family Γ2. It is known that
Mp(Γ1) ≤Mp(Γ2) as Γ1 > Γ2, see Theorem 6.4 in [18].

3. Differentiability. Let f : D → Rn be a discrete open mapping. Let β : [a, b)→ Rn be a
path and x ∈ f−1 (β(a)) . A path α : [a, c)→ D is called a maximal f -lifting of β starting at x
if (1) α(a) = x; (2) f ◦α = β|[a,c); (3) if c < c′ ≤ b, then there is no path α′ : [a, c′)→ D
such that α = α′|[a,c) and f ◦α′ = β|[a,c′). If f is a discrete open mapping, then every path β
with x ∈ f−1 (β(a)) has a maximal f -lifting starting at the point x, see Corollary 3.3, Ch. II
in [16]. We need the following statement, see Proposition 10.2, Ch. II in [16].

Lemma 1. Let E = (A,C) be a condenser in Rn and let ΓE be the family of all paths of
the form γ : [a, b)→ A with γ(a) ∈ C and |γ|∩ (A \ F ) 6= ∅ for every compact F ⊂ A. Then
cappE = Mp (ΓE) .

Theorem 1. Let D be a domain in Rn, n ≥ 2, and f : D → Rn be a ring (p,Q)-mapping
with Q ∈ L1

loc and p > n − 1. Suppose that f is discrete and open. Then f is differentiable
a.e. in D.

Proof. Without loss of generality we may assume that ∞ /∈ D′ = f(D). Let us consider the
set function Φ(B) = m (f(B)) defined over the algebra of all the Borel sets B in D. By 2.2,
2.3 and 2.12 in [11]

ϕ(x) = lim sup
ε→0

Φ(B(x, ε))

Ωnεn
<∞ (9)

for a.e. x ∈ D. Consider the spherical ring Rε(x) = {y : ε < |x− y| < 2ε}, x ∈ D, with ε > 0
such that B(x, 2ε) ⊂ D. Note that E = (B(x, 2ε), B(x, ε)) is a condenser in D and

f(E) = (f(B(x, 2ε)), f(B(x, ε)))

is a condenser in D′. Let ΓE and Γf(E) be path families from Lemma 1. Then

capp(f(B(x, 2ε), f(B(x, ε))) = Mp(Γf(E)). (10)

Let Γ∗ be a family of maximal f -liftings of Γf(E) starting at B (x, ε). We show that Γ∗ ⊂
ΓE. Suppose the contrary. Then there is a path β : [a, b) → Rn of Γf(E) such that the
corresponding maximal f -lifting α : [a, c)→ B(x, 2ε) is contained in some compact K inside
of B(x, 2ε). Thus, α is a compactum in B(x, 2ε), see Theorem 2, §45 in [10]. Remark that
c 6= b. Indeed, in the contrary case β is a compactum in f(A) that contradicts the condition
β ∈ Γf(E). Consider the set

G =
{
x ∈ Rn : x = lim

k→∞
α(tk)

}
, tk ∈ [a, c), lim

k→∞
tk = c.
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Without loss of generality we may assume that tk is a monotone sequence. By continuity of
f, for x ∈ G, f (α(tk)) → f(x) as k → ∞ where tk ∈ [a, c), tk → c as k → ∞. However,
f (α(tk)) = β(tk) → β(c) as k → ∞. Thus, f is a constant in G ⊂ B(x, 2ε). On the other
hand, from the Cantor condition on the compact α,

G =
∞⋂
k=1

α ([tk, c)) = lim sup
k→∞

α ([tk, c)) = lim inf
k→∞

α ([tk, c)) 6= ∅

by monotonicity of the sequences of connected sets α ([tk, c)), see [10]. Thus, G is connected
by relation (9.12) of Ch. I in [19]. Consequently, G is a single point by discreteness of f. So,
a path α : [a, c)→ B(x, 2ε) can be extended to α : [a, c]→ K ⊂ B(x, 2ε) and f (α(c)) = β(c).
By Corollary 3.3 Ch. II in [16], we can construct a maximal f -lifting α′ of β|[c,b) started at
α(c). United the liftings α and α′, we have a new f -lifting α′′ of β defined on [a, c′), c′ ∈ (c, b),
that contradicts the maximality of f -lifting α. Thus, Γ∗ ⊂ ΓE. Remark that Γf(E) > fΓ∗

and consequently, Mp

(
Γf(E)

)
≤Mp (fΓ∗) ≤Mp (fΓE) .

Let {ri}∞i=1 be an arbitrary sequence of numbers with ε < ri < 2ε such that ri → 2ε− 0.
Denote by Γi the family of paths joining the spheres |x− y| = ε and |x− y| = ri in the ring
ε < |x− y| < ri. Then ΓE > Γi for every i ∈ N. Consider the family of functions

ηi,ε(t) =

{
1

ri−ε , t ∈ (ε, ri),

0, t ∈ R \ (ε, ri).

By the definition of a ring Q-mapping,

Mp(fΓE) ≤Mp(fΓi) ≤
1

(ri − ε)p

∫
ε<|x−y|<ri

Q(y)dm(y) ≤ 1

(ri − ε)p

∫
B(x,2ε)

Q(y)dm(y). (11)

Letting to the limit in (11) as i→∞, we obtain

Mp(fΓE) ≤ 1

εp

∫
B(x,2ε)

Q(y)dm(y). (12)

From (10) and (12)

capp

(
f (B(x, 2ε)) , f

(
B(x, ε)

))
≤ 1

εp

∫
B(x,2ε)

Q(y)dm(y). (13)

On the other hand, by Proposition 6 in [9]

capp

(
f (B(x, 2ε)) , f

(
B(x, ε)

))
≥
(
c1

dp (f (B(x, ε)))

[m (f (B(x, 2ε)))]1−n+p

) 1
n−1

(14)

where c1 depends only on n and p, d(A) is the diameter and m(A) is the Lebesgue measure
of A in Rn.

Combining (13) and (14), we obtain that

d (f (B(x, ε)))

ε
≤ c2

(m (f (B(x, 2ε)))

m(B(x, 2ε))

) 1−n+p
p
( 1

m(B(x, 2ε))

∫
B(x,2ε)

Q(y)dm(y)
)n−1

p
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and hence,

L(x, f) ≤ lim sup
ε→0

d(f (B(x, ε)))

ε
≤ c2ϕ

1−n+p
p (x)Q

n−1
p (x)

where
L(x, f) = lim sup

y→x

|f(y)− f(x)|
|y − x|

. (15)

Thus, L(x, f) <∞ a.e. in D. Finally, applying the Rademacher–Stepanov theorem, see e.g.
[17], p. 311, we conclude that f is differentiable a.e. in D.

Corollary 1. Let D be a domain in Rn, n ≥ 2, and f : D → Rn be a ring (p,Q)-mapping
with Q ∈ L1

loc and p > n−1. Suppose that f is discrete and open. Then the partial derivatives
of f are locally integrable.

Proof. Given a compact set V ⊂ D, we have∫
V

L(x, f)dm(x) ≤ c2

∫
V

ϕ
1−n+p

p (x)Q
n−1
p (x)dm(x).

Applying the Hölder inequality, see (17.3) in [2] and taking into account that p > n− 1,
we obtain∫

V

ϕ
1−n+p

p (x)Q
n−1
p (x)dm(x) ≤

(∫
V

ϕ(x)dm(x)
) 1−n+p

p

(∫
V

Q(x)dm(x)

)n−1
p

and since Q ∈ L1
loc∫

V

L(x, f)dm(x) ≤ c2 (N(f, V ))2(1−n+p)/p ·
(∫

V

Q(x)dm(x)
)n−1

p
<∞,

see Lemma 2.3 in [11].

Corollary 2. Let D be a domain in Rn, n ≥ 2, and f : D → Rn be a ring (p,Q)-mapping
with Q ∈ L1

loc and p > n− 1. Suppose that f is discrete and open. Then

‖f ′(x)‖p ≤ C · |J(x, f)|1−n+pQn−1(x)

a.e. where the constant C depends on n and p only.

4. On the ACL property of discrete open (p,Q)-mappings.

Theorem 2. Let D be a domain in Rn, n ≥ 2, and f : D → Rn be a ring (p,Q)-mapping
with Q ∈ L1

loc and p > n− 1. Suppose that f is discrete and open. Then f ∈ ACL.

Proof. Without loss of generality we may assume that ∞ /∈ D′ = f(D). Let I = {x ∈
Rn : ai < xi < bi, i = 1, . . . , n} be an n-dimensional interval in Rn such that I ⊂ D. Then
I = I0 × J where I0 is an (n − 1)-dimensional interval in Rn−1 and J is an open segment
of the axis xn, J = (a, b). Next we identify Rn−1 × R with Rn. We prove that for almost all
segments Jz = {z} × J, z ∈ I0, the mapping f |Jz is absolutely continuous.

Consider the set function Φ(B) = m (f(B × J)) defined over the algebra of all Borel sets
B in I0. By 2.2, 2.3 and 2.12 in [11]

ϕ(z) = lim sup
r→0

Φ(B(z, r))

Ωn−1rn−1
<∞ (16)
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for a.e. z ∈ I0 where B(z, r) is the ball in Rn−1 centered at a point z ∈ I0 of radius r and
Ωn−1 is the volume of the unit ball in Rn−1.

Let ∆i, i = 1, 2, ..., be some enumeration S of all intervals in J such that ∆i ⊂ J and the
endpoints of ∆i are rational numbers. Set

ϕi(z):=

∫
∆i

Q(z, xn)dxn.

Then by the Fubini theorem, see e.g. III. 8.1 in [17], the functions ϕi(z) are finite a.e. and
integrable in z ∈ I0. In addition, by the Lebesgue theorem on the differentiability of the
indefinite integral, there is a finite a.e. limit

lim
r→0

Φi(B(z, r))

Ωn−1rn−1
= ϕi(z) (17)

where Φi for a fixed i = 1, 2, . . . is the set function

Φi(B) =

∫
B

ϕi(ζ)dζ

defined on the algebra of all Borel sets B in I0.
Let us show that the mapping f is absolutely continuous on each segment Jz, z ∈ I0, where

the finite limits (16) and (17) exist. Fix one of such a point z. We have to prove that the
sum of diameters of the images of an arbitrary finite collection of mutually disjoint segments
in Jz = {z} × J tends to zero together with the total length of the segments. In view of the
continuity of the mapping f , it is sufficient to verify this fact for mutually disjoint segments
with rational endpoints in Jz only. So, let ∆∗i = {z} × ∆i ⊂ Jz where ∆i ∈ S, i = 1, ..., k
under the corresponding re-enumeration of S, are mutually disjoint intervals. Without loss
of generality, we may assume that ∆i, i = 1, ..., k are also mutually disjoint.

Let δ > 0 be an arbitrary rational number which is less than a half of the minimum of
the distances between ∆∗i , i = 1, ..., k, and also less than their distances to the endpoints of
the interval Jz. Let ∆∗i = {z}× [αi, βi] and Ai = Ai(r) = B(z, r)× (αi−δ, βi+δ), i = 1, ..., k,
where B(z, r) is the open ball in I0 ⊂ Rn−1 centered at a point z of radius r > 0.

For small r > 0, Ei = (Ai,∆
∗
i ), i = 1, ..., k are condensers in I and hence, f(Ei) =

(f (Ai) , f (∆∗i )) , i = 1, ..., k are condensers in D′. By Lemma 1, capp (f (Ai) , f (∆∗i )) =
Mp(Γf(Ei)). Denoting through ΓE∗i a family of maximal f -liftings of Γf(Ei) starting at ∆∗i , we
obtain ΓE∗i ⊂ ΓEi

and
capp (f(Ai), f(∆∗i )) ≤Mp(fΓEi

). (18)

Note that the function

ρi(x) =

{
1
r
, x ∈ Ai,

0, x 6∈ Ai
is admissible for the path’s families Ei for r < δ, thus from (5) and by the definition of
Q-mapping we obtain

capp (f(Ai), f(∆∗i )) ≤
1

rp

∫
Ai

Q(x)dm(x). (19)

On the other hand, by Proposition 6 of §1 in [9],

capp (f(Ai), f(∆∗i )) ≥
(
c

dpi
m1−n+p
i

) 1
n−1 (20)
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where di is the diameter of the set f(∆∗i ), mi is the volume of f(Ai) and c is a constant
depending on n and p only.

Combining (19) and (20), we have( dpi
m1−n+p
i

) 1
n−1≤ c1

rp

∫
Ai

Q(x)dm(x) (21)

with a constant c1 depending only on n, p and all i = 1, ..., k.
By the discrete Hölder inequality see e.g. (17.3) in [2], we obtain

k∑
i=1

di ≤
( k∑
i=1

( dpi
m1−n+p
i

) 1
n−1
)n−1

p
( k∑
i=1

mi

) 1−n+p
p

,

i.e. ( k∑
i=1

di

)p
≤
( k∑
i=1

( dpi
m1−n+p
i

) 1
n−1
)n−1

[Φ(B(z, r))]1−n+p.

By (21) ( k∑
i=1

di

)p
≤ c2

[
Φ(B(z, r))

Ωn−1rn−1

]1−n+p
(

k∑
i=1

∫
Ai
Q(x)dm(x)

Ωn−1rn−1

)n−1

where c2 depends on n and p only. Passing to the limit first as r → 0 and then as δ → 0, we
obtain ( k∑

i=1

di

)p
≤ c2[ϕ(z)]1−n+p

( k∑
i=1

ϕi(z)
)n−1

. (22)

Finally, in view of (22), the absolute continuity of the indefinite integral of Q over the
segment Jz implies the absolute continuity of the mapping f over the same segment. Hence,
f ∈ ACL.

Combining Theorem 2 with Corollary 1, we obtain the following conclusion, see also [13].

Corollary 3. Let D be a domain in Rn, n ≥ 2, and f : D → Rn be a ring (p,Q)-mapping
with Q ∈ L1

loc and p > n− 1. Suppose that f is discrete and open. Then f ∈ W 1,1
loc .
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