|
Congruences of the semigroup $\mathcal{IO}_{\mathbb{N}}$ (in Ukrainian) |
Author |
V. O. Pyekhtyeryev, K. S. Tråtyak
vasiliy@univ.kiev.ua,
ch_slavka@ukr.net
ÊÍÓ iì.Òàðàñà Øåâ÷åíêî
|
Abstract |
We describe congruences of the semigroup $\mathcal{IO}_{\mathbb{N}}$ of
all order-preserving partial bijections on the set $\mathbb{N}$ with the natural order.
In particular, we prove that this semigroup contains only one non-Rees congruence. |
Keywords |
congruence; natural order |
Reference |
1. Fernandes V.H. The monoid of all injective order preserving partial transformations on a finite chain//
Semigroup Forum. – 1997. – V.54, ¹2. – P. 230–236.
2. Ganyushkin O., Mazorchuk V. Introduction to classical finite transformation semigroup. – London: Springer,
2009. – 314 p.
3. Ganyushkin O., Mazorchuk V. On the structure of $\mathcal{IO}_n$// Semigroup Forum. – 2003. – V.66, ¹3. –
P. 455–483.
4. Garba G.U. Nilpotents in semigroups of partial one-to-one order-preserving mappings// Semigroup Forum.
– 1994. – V.48, ¹1. – P. 37–49.
5. Higgins P.M., Mitchell J.D., Ruskuc N. Generating the full transformation semigroup using order preserving
mappings// Semigroup Forum. – 2003. – V.45, ¹3. – P. 557–566.
6. Pyekhtyeryev V.O. $\mathcal{H}-$, $\mathcal{R}-$ and
$\mathcal{L}-$cross-sections of infinite symmetric inverse semigroup// J. Algebra
and Discrete Mathematics. – 2005. – V.1. – P. 92–104.
7. Ëèáåð À.Å. Î ñèììåòðè÷åñêèõ îáîáùåííûõ ãðóïïàõ. Ìàò. ñáîðíèê. – 1953. – Ò.33(75), ¹3. –
P. 531–544.
|
Pages |
22-27 |
Volume |
35 |
Issue |
1 |
Year |
2011 |
Journal |
Matematychni Studii |
Full text of paper |
PDF |
Table of content of issue |
HTML |