Congruences of the semigroup $\mathcal{IO}_{\mathbb{N}}$ (in Ukrainian)

Author V. O. Pyekhtyeryev, K. S. Tråtyak
vasiliy@univ.kiev.ua, ch_slavka@ukr.net
ÊÍÓ iì.Òàðàñà Øåâ÷åíêî

Abstract We describe congruences of the semigroup $\mathcal{IO}_{\mathbb{N}}$ of all order-preserving partial bijections on the set $\mathbb{N}$ with the natural order. In particular, we prove that this semigroup contains only one non-Rees congruence.
Keywords congruence; natural order
Reference 1. Fernandes V.H. The monoid of all injective order preserving partial transformations on a finite chain// Semigroup Forum. – 1997. – V.54, ¹2. – P. 230–236.

2. Ganyushkin O., Mazorchuk V. Introduction to classical finite transformation semigroup. – London: Springer, 2009. – 314 p.

3. Ganyushkin O., Mazorchuk V. On the structure of $\mathcal{IO}_n$// Semigroup Forum. – 2003. – V.66, ¹3. – P. 455–483.

4. Garba G.U. Nilpotents in semigroups of partial one-to-one order-preserving mappings// Semigroup Forum. – 1994. – V.48, ¹1. – P. 37–49.

5. Higgins P.M., Mitchell J.D., Ruskuc N. Generating the full transformation semigroup using order preserving mappings// Semigroup Forum. – 2003. – V.45, ¹3. – P. 557–566.

6. Pyekhtyeryev V.O. $\mathcal{H}-$, $\mathcal{R}-$ and $\mathcal{L}-$cross-sections of infinite symmetric inverse semigroup// J. Algebra and Discrete Mathematics. – 2005. – V.1. – P. 92–104.

7. Ëèáåð À.Å. Î ñèììåòðè÷åñêèõ îáîáùåííûõ ãðóïïàõ. Ìàò. ñáîðíèê. – 1953. – Ò.33(75), ¹3. – P. 531–544.

Pages 22-27
Volume 35
Issue 1
Year 2011
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML