Dibands of subdimonoids |
|
| Author |
zhuchok_a@mail.ru
Department of Mechanics and Mathematics, Kyiv National Taras,Shevchenko University, Volodymyrska str., 64, 01033 Kyiv, Ukraine
|
| Abstract |
We prove that every diband of subdimonoids of type $\Gamma$ is a semilattice of subdimonoids each of which is a rectangular diband of subdimonoids of type $\Gamma$.
|
| Keywords |
rectangular diband, subdimonoid, semilattice
|
| DOI |
doi:10.30970/ms.33.2.120-124
|
Reference |
1. J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lecture Notes in Math. 1763, Springer, Berlin, 2001, pp.~7-66.
2. A.V. Zhuchok, Commutative dimonoids, Algebra and Discrete Mathematics, 2 (2009), 116-127. 3. A.H. Clifford, G.B. Preston, The algebraic theory of semigroups, vol. 1, 2, American Mathematical Society, 1964,1967. 4. A.V. Zhuchok, On idempotent dimonoids, International Conference on Semigroups and related topics, Porto, Portugal, 2009, p. 87. 5. A.H. Clifford, Bands of semigroups, Proc. Amer. Math. Soc. 5 (1954), 499-504. 6. A.V. Zhuchok, Semiretractions of dimonoids, Proc. of Institute of Applied Math. and Mech. of NAS of Ukraine, 17 (2008), 42-50 (In Ukrainian). |
| Pages |
120-124
|
| Volume |
33
|
| Issue |
2
|
| Year |
2010
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |