Dibands of subdimonoids

Author
A.V.Zhuchok
Department of Mechanics and Mathematics, Kyiv National Taras,Shevchenko University, Volodymyrska str., 64, 01033 Kyiv, Ukraine
Abstract
We prove that every diband of subdimonoids of type $\Gamma$ is a semilattice of subdimonoids each of which is a rectangular diband of subdimonoids of type $\Gamma$.
Keywords
rectangular diband, subdimonoid, semilattice
DOI
doi:10.30970/ms.33.2.120-124
Reference
1. J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lecture Notes in Math. 1763, Springer, Berlin, 2001, pp.~7-66.

2. A.V. Zhuchok, Commutative dimonoids, Algebra and Discrete Mathematics, 2 (2009), 116-127.

3. A.H. Clifford, G.B. Preston, The algebraic theory of semigroups, vol. 1, 2, American Mathematical Society, 1964,1967.

4. A.V. Zhuchok, On idempotent dimonoids, International Conference on Semigroups and related topics, Porto, Portugal, 2009, p. 87.

5. A.H. Clifford, Bands of semigroups, Proc. Amer. Math. Soc. 5 (1954), 499-504.

6. A.V. Zhuchok, Semiretractions of dimonoids, Proc. of Institute of Applied Math. and Mech. of NAS of Ukraine, 17 (2008), 42-50 (In Ukrainian).

Pages
120-124
Volume
33
Issue
2
Year
2010
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue