Existence of standing waves in discrete nonlinear equation of Schrödinger type with saturable nonlinearity (in Ukrainian) |
|
| Author |
sergiy.bak@gmail.com
Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
|
| Abstract |
In this paper we obtained results on existence of standing waves in discrete nonlinear equation of Schrödinger type with saturable nonlinearity. We consider two types of solutions: with periodic amplitude and vanishing at infinity. Calculus of variations and Nehari manifold are employed to establish the existence of these solutions.
|
| Keywords |
standing wave, discrete nonlinear equation, saturable nonlinearity, periodic amplitude, Nehari manifold
|
| DOI |
doi:10.30970/ms.33.1.78-84
|
Reference |
1. Бак С. Н., Панков А. А. О периодических колебаниях бесконечной цепочки линейно связанных нелинейных осцилляторов // Доповіді НАН України. - 2004. - №9. - C. 13-16.
2. Бак С. Н. Метод условной минимизации в задаче о колебаниях цепочки нелинейных осцилляторов //Математическая физика, анализ, геометрия. - 2004. - №3. - Т.11. - С. 263-273. 3. Бак С. М. Біжучі хвилі в ланцюгах осциляторів // Математичні студії. - 2006. - Т. 26, №2. - С.~140-153. 4. Aubry S. Breathers in nonlinear lattices: Existence, linear stability and quantization // Physica D. - 1997. - V. 103. - P. 201 - 250. 5. Bak S. M. Peridoc traveling waves in chains of oscillators// Communications in Mathematical Analysis. - 2007. - V. 3, N 1. - Р. 19-26. 6. Henning D., Tsironis G. Wave transmission in nonliniear lattices // Physics Repts. - 1999. - V. 309. - P. 333-432. 7. Pankov A. Traveling waves and periodic oscillations in Fermi-Pasta-Ulam Lattices. - London-Singapore: Imperial College Press, 2005. - 196 pp. 8. Pankov A. Gap solitons in periodic discrete NLS equations// Nonlinearity. - 2006. - V. 19. - P. 27-40. 9. Pankov A. Gap solitons in periodic discrete NLS equations II: A generalized Nehari manifold approach// Discr. Cont. Dyn. Syst. - 2007. - V. 19. - P. 419-430. 10. Pankov A., Rothos V. Periodic and decaying solutions in DNLS with saturable nonlinearity// Proc. Roy. Soc. A. - To appear. 11. Teschl G. Jacobi operators and completely integrable nonlinear lattices, Amer. Math. Soc., Providence, 2000. - 251 pp. |
| Pages |
78-84
|
| Volume |
33
|
| Issue |
1
|
| Year |
2010
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |