Entire function with prescribed growth |
|
| Author |
brodyakoksana@mail.ru, YaVasylkiv@gmail.com
Lviv Polytechnical National University, Lviv Ivan Franko National University
|
| Abstract |
It is established that for an entire function constructed by A. Edrei and W. H. J. Fuchs (Can. J. Math. — 1965. — V. 17, No 3. — P. 383–395) in the form of a certain infinite product, in connection with appropriate Valiron's problem (Ann. Fac. Sci. Toulouse. — 1913. — Vol. 5. — P. 117–208), the following asymptotic relations are valid: \( \log m_p(r,f) \sim m_q(r,\log f) \sim \lambda(r) \quad (r \to +\infty), \) where \( 0 \le p < +\infty,\ 1 \le q \le \frac{s}{s-1} \), \( m_s(r,*) \) are s-th Lebesgue integral means, \( \lambda(r) \) is a positive, continuous, increasing to \( +\infty \) and convex with respect to \( \log r \) function such that \( \lambda\left(r + \frac{1}{\lambda(r)}\right) < \exp\left(\lambda^\eta(r)\right) \) for a certain \( \eta \in (0, \tfrac{1}{2}) \), and \( r\lambda'(r)\,(\log\log(r\lambda'(r)))^s = o(\lambda^s(r)) \) as \( r \to +\infty,\ 1 < s \le 2 \). |
| Keywords |
entire function, prescribed growth, infinite product, Valiron's problem, Lebesgue integral mean
|
| DOI |
doi:10.30970/ms.33.1.56-64
|
Reference |
1. Valiron~G. Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions a correspondance régulière// Ann. Fac. Sci. Toulouse. - 1913. - V.5. - P.117-208.
2. Edrei~A., Fuchs W.H.P. Entire and meromorphic functions with asymtotically prescribed characteristic// Canad. J. Math. - 1965. - V.17, № 3. - P.383-395. 3. Clunie~J. On integral functions having prescribed asymptotic growth// Canad. J. Math. - 1965. - V.17, № 3. - P.396-404. 4. Clunie~J., Kövari T. On integral functions having prescribed asymptotic growth. II// Canad. J. Math. - 1966. - V.18. - P.7-20. 5. Miles~J.~B., Shea D.F. An extremal problem in value distribution theory// Quart. J. Math. (Oxford). - 1973. - V.24. - P.377-383. 6. Kalynets~R.Z., Kondratyuk A.A. On the growth regularity of modulus and argument of entire function in $L^p[0, 2\pi]$-metrics. // Ukr. Math. J. - 1998. - V.50, № 7. - P.889-896. (in Ukrainian) 7. Vasyl'kiv~Ya.~V. Asymptotic behavior of the logarithmic derivatives and the logarithms of meromorphic functions of completely regular growth in $L^p[0, 2\pi]$-metric.I// Mat. Studii. - 1999. - V.12, № 1. - P.37-58. (in Ukrainian) 8. Brydun~A.~M., Lyzun O.Ya., Mytsyk R.Z. Generalization of Lindelöf theorem for entire functions. // Visnyk L'viv Univ. - 2000. - V.56. - P.20-27. (in Ukrainian) 9. Kondratyuk~А.~А. Fourier series and meromorphic functions. - L'viv: Vyscha Shkola, 1988. (in Russian) 10. Hardy~G.~H., Wright E.M. An Introduction to the Theory of Numbers. - Oxford: Oxford Univ. Press, Fifth Edition, 1979. 11. Robin~G. Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann// J. Math. Pures Appl. - 1984. - V.63. - P.187-213. 12. Hayman~W.~K. Meromorphic functions. - Moscow: Mir, 1966. (in Russian) 13. Gol'dberg~A.~A., Ostrovskii I.V. Value distributions of meromorphic functions. - Moscow: Nauka, 1970. (in Russian) 14. Zygmund~А. Trigonometric series: Vols I,II. - Moscow: Mir, 1965. (in Russian) |
| Pages |
56-64
|
| Volume |
33
|
| Issue |
1
|
| Year |
2010
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |