On the belonging of an entire Dirichlet series to the logarithmic convergence class (in Ukrainian)

Author
O.M.Mulyava, M.M.Sheremeta
Kyiv National University of Food Technologies, Ivan Franko National University of Lviv
Abstract
For entire Dirichlet series, $F(s)=\sum\limits_{n=0}^{\infty}a_n\exp\{s\lambda_n\}$ let $M(\sigma)=\sup\{|F(\sigma+it)|:t\in \mathbb{R}\}$ and $\mu(\sigma)=\max\{|a_n|\exp{(\sigma\lambda_n)}:n\ \ge 0\}$. Conditions on $\lambda_n$ for the equivalence of the relations $\int\nolimits_{0}^{\infty}{{\sigma^{-p-1}}{\ln\,M(\sigma)}d\sigma}<+\infty$ and $\int\nolimits_{0}^{\infty}{\sigma^{-p-1}{\ln\,\mu(\sigma)}d\sigma}<+\infty$ $(p>1)$ are established.
Keywords
entire Dirichlet series, exponent, logarithm of maximum modulus, maximal term
DOI
doi:10.30970/ms.33.1.17-21
Reference
1. Kamthan P.K. A theorem on step functions (III)// Istambul Univ. Fen. Fac. Mecm., A. - 1963. - V. 28. - P.65-69.

2. Мулява О.М. Про класи збіжності рядів Діріхле// Укр. матем. журн. - 1999. - Т. 51, №11. - С.1485-1494.

3. Filevych P.V., Fedynyak S.I. On belonding of entire Dirichlet series to convergence class// Mat. Stud. - 2001. - V. 16, №1. - P.57-60.

4. Sumyk O.M., Sheremeta M.M. On connection between the growth of maximum modulus and maximal term of entire Dirichlet series in term of m-member asymptotics// Mat. Stud. -2003. - V. 19, №1. - P.83-88.

5. Мулява О.М. Про абсцису збіжності ряду Діріхле// Мат. Cтудії. - 1998. - Т. 9, №2. - C.171-176.

Pages
17-21
Volume
33
Issue
1
Year
2010
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue