On the belonging of an entire Dirichlet series to the logarithmic convergence class (in Ukrainian) |
|
| Author |
Kyiv National University of Food Technologies, Ivan Franko National University of Lviv
|
| Abstract |
For entire Dirichlet series, $F(s)=\sum\limits_{n=0}^{\infty}a_n\exp\{s\lambda_n\}$ let $M(\sigma)=\sup\{|F(\sigma+it)|:t\in \mathbb{R}\}$ and $\mu(\sigma)=\max\{|a_n|\exp{(\sigma\lambda_n)}:n\ \ge 0\}$. Conditions on $\lambda_n$ for the equivalence of the relations $\int\nolimits_{0}^{\infty}{{\sigma^{-p-1}}{\ln\,M(\sigma)}d\sigma}<+\infty$ and $\int\nolimits_{0}^{\infty}{\sigma^{-p-1}{\ln\,\mu(\sigma)}d\sigma}<+\infty$ $(p>1)$ are established.
|
| Keywords |
entire Dirichlet series, exponent, logarithm of maximum modulus, maximal term
|
| DOI |
doi:10.30970/ms.33.1.17-21
|
Reference |
1. Kamthan P.K. A theorem on step functions (III)// Istambul Univ. Fen. Fac. Mecm., A. - 1963. - V. 28. - P.65-69.
2. Мулява О.М. Про класи збіжності рядів Діріхле// Укр. матем. журн. - 1999. - Т. 51, №11. - С.1485-1494. 3. Filevych P.V., Fedynyak S.I. On belonding of entire Dirichlet series to convergence class// Mat. Stud. - 2001. - V. 16, №1. - P.57-60. 4. Sumyk O.M., Sheremeta M.M. On connection between the growth of maximum modulus and maximal term of entire Dirichlet series in term of m-member asymptotics// Mat. Stud. -2003. - V. 19, №1. - P.83-88. 5. Мулява О.М. Про абсцису збіжності ряду Діріхле// Мат. Cтудії. - 1998. - Т. 9, №2. - C.171-176. |
| Pages |
17-21
|
| Volume |
33
|
| Issue |
1
|
| Year |
2010
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |