Evaluation fibrations and path-components of the map space $M(\mathbb S^n+k,\mathbb S^n)$ for $0\le k\le 7$

Author
M.Golasi'nski
Faculty of Mathematics and Computer Science,Nicolaus Copernicus University,Chopina 12/18, 87-100 Toruń, Poland, , Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Żołnierska 14, 10-561 Olsztyn, Poland
Abstract
Let $M(\mathbb{S}^m,\mathbb{S}^n)$ be the space of maps of the $m$-sphere $\mathbb{S}^m$ into the $n$-sphere $\mathbb{S}^n$ with $m,n\ge 1$. We estimate the number of homotopy types of path-components of $M(\mathbb{S}^{n+k},\mathbb{S}^n)$ and fibre homotopy types of evaluation fibrations $\omega_\alpha\colon M_\alpha(\mathbb{S}^{n+k},\mathbb{S}^n)\to \mathbb{S}^n$ for $\alpha\in\pi_{n+k}(\mathbb{S}^n)$ with $0\le~k\le~7.$ Further, the number of strongly homotopy types of $\omega_\alpha\colon M_\alpha(\mathbb{S}^{n+k}, \mathbb{S}^n)\to \mathbb{S}^n$ for $0\le~k\le~7$ is determined.
Keywords
evaluation fibration, path-component, map space
DOI
doi:10.30970/ms.31.2.189-194
Reference
1. M. Golaśiński and J. Mukai, Gottlieb groups of spheres, Topology 47 (2008), 399-430.

2. D. Gottlieb, A certain subgroup of the fundamental group, Amer. J. of Math.\ 87 (1965), 840-856.

3. D. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. of Math. 91 (1969), 729-756.

4. V.L. Hansen, Equivalence of evaluation fibrations, Invent. Math. 23 (1974), 163-171.

5. V.L. Hansen, The homotopy problem for the components in the space of maps of the $n$-sphere, Quart. J. Math. Oxford Ser. (2) 25 (1974), 313-321.

6. S.T. Hu, Homotopy theory, Academic Press, 1959.

7. G. Lupton and S.B. Smith, Criteria for components of a function space to be homtopy equivalence, preprint.

8. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton, 1962.

Pages
189-194
Volume
31
Issue
2
Year
2009
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue