УДК 517.5

Marek Golasiński

EVALUATION FIBRATIONS AND PATH-COMPONENTS OF THE MAP SPACE $M(\mathbb{S}^{n+k}, \mathbb{S}^n)$ FOR $0 \le k \le 7$

M. Golasiński. Evaluation fibrations and path-components of the map space $M(\mathbb{S}^{n+k}, \mathbb{S}^n)$ for $0 \le k \le 7$, Mat. Stud. **31** (2009), 189–194.

Let $M(\mathbb{S}^n, \mathbb{S}^n)$ be the space of maps of the m-sphere \mathbb{S}^n into the n-sphere \mathbb{S}^n with $m, n \geq 1$. We estimate the number of homotopy types of path-components of $M(\mathbb{S}^{n+k}, \mathbb{S}^n)$ and fibre homotopy types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+k}, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+k}(\mathbb{S}^n)$ with $0 \leq k \leq 7$. Further, the number of strongly homotopy types of $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+k}, \mathbb{S}^n) \to \mathbb{S}^n$ for $0 \leq k \leq 7$ is determined.

М. Голасинский. Расслоения вычисления и компоненты линейной связности пространства $M(\mathbb{S}^{n+k}, \mathbb{S}^n)$ для $0 \le k \le 7$ // Мат. Студії. -2009. - Т.31, №2. - С.189—194.

Пусть $M(\mathbb{S}^m,\mathbb{S}^n)$ обозначает пространство отображений из m-сферы \mathbb{S}^m в n-сферу \mathbb{S}^n $(m,n\geq 1)$. Оценивается число гомотопических типов компонент линейной связности $M(\mathbb{S}^{n+k},\mathbb{S}^n)$ и послойно гомотопических типов расслоений вычисления $\omega_\alpha\colon M_\alpha(\mathbb{S}^{n+k},\mathbb{S}^n)\to \mathbb{S}^n$ для $\alpha\in\pi_{n+k}(\mathbb{S}^n)$ и $0\leq k\leq 7$. Также найдено число сильных гомотопических типов отображений $\omega_\alpha\colon M_\alpha(\mathbb{S}^{n+k},\mathbb{S}^n)\to \mathbb{S}^n$ для $0\leq k\leq 7$.

Introduction. For a pair of spaces X and Y, let M(X,Y) be the space of all continuous maps of X into Y equipped with the compact-open topology. The space M(X,Y) is generally disconnected with path-components in one-to-one correspondence with the set [X,Y] of (free) homotopy classes of maps of X into Y.

For $x_0 \in X$, consider the evaluation map

$$\omega \colon M(X,Y) \to Y$$

defined by $\omega(f) = f(x_0)$ for $f \in M(X,Y)$. Let $M_{\alpha}(X,Y)$ denote the path-component of M(X,Y) which contains the maps in $\alpha \in [X,Y]$. By [6, Theorem 13.1], the evaluation map $\omega_{\alpha} \colon M_{\alpha}(X,Y) \to Y$ obtained by restricting ω to $M_{\alpha}(X,Y)$ is a Hurewicz fibration provided X is locally compact. Then, the natural classification problems arise:

- (1) Divide the set of path-components in M(X,Y) into homotopy types.
- (2) Divide the set of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(X,Y) \to Y$ into fibre- and strongly fibre-homotopy types for $\alpha \in [X,Y]$.

Certainly, for the space $M(\mathbb{S}^m, \mathbb{S}^n)$ of maps of the m-sphere \mathbb{S}^m into the n-sphere \mathbb{S}^n with $m, n \geq 1$, the path-components can be enumerated by the homotopy group $\pi_m(\mathbb{S}^n)$. By [5], there is a strong relation between evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^m, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_m(\mathbb{S}^n)$ and the Whitehead product $[\alpha, \iota_n]$. This was used in [5, Theorem 5.1 and Theorem 5.2] to tackle a complete homotopy classification of path-components of $M(\mathbb{S}^m, \mathbb{S}^n)$ for m = n, n+1.

 $2000\ \textit{Mathematics Subject Classification:}\ 54\text{C}35,\ 55\text{P}15;\ 55\text{P}45,\ 55\text{Q}05.$

The purpose of this note is to present the classification problems above for m = n + k with $0 \le k \le 7$. Section 1 summarizes [4, 5] and follows [7] to connect in Theorem 1.1 these classification problems for $M(\mathbb{S}^m, \mathbb{S}^n)$ with the m-th Gottlieb group $G_m(\mathbb{S}^n)$ considered in [2, 3] and then studied in [1].

Section 2 makes use of [1] to take up the systematic study of the quotient sets $\pi_{n+k}(\mathbb{S}^n)/\pm G_{n+k}(\mathbb{S}^n)$ with $0 \leq k \leq 7$. Then, our basic results stated in Theorems: 2, 3, 4 and 5 estimate the number of homotopy types of path-components of $M(\mathbb{S}^{n+k},\mathbb{S}^n)$ and fibre-homotopy types of evaluations fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+k},\mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+k}(\mathbb{S}^n)$ with $0 \leq k \leq 7$. Further, the number of strong fibre-homotopy types of $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+k},\mathbb{S}^n) \to \mathbb{S}^n$ with $0 \leq k \leq 7$ is determined. At the end, Corollary 1 concludes a list of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+k},\mathbb{S}^n) \to \mathbb{S}^n$ which are fibre-homotopy equivalent but not strongly fibre-homotopy equivalent for $\alpha \in \pi_{n+k}(\mathbb{S}^n)$ with some $0 \leq k \leq 7$.

The author is grateful to G. Lupton and S. B. Smith for making accessible the paper [7] results of which inspired the investigations above, and to the referee for a number of valuable remarks.

- **1. Preliminaries.** A fibration $p: E \to B$ with a fibre F means a Hurewicz fibration together with a fixed homotopy equivalence $i: F \to p^{-1}(b_0)$ over the base point $b_0 \in B$. Recall that for fibrations $p_1: E_1 \to B$ and $p_2: E_2 \to B$ a based map $f: E_1 \to E_2$ is:
- (1) a fibre homotopy equivalence (**fhe**) if there exists $g: E_2 \to E_1$ such that $g \circ f$ and $f \circ g$ are homotopic to the respective identities by based homotopies F and G satisfying $p_1 \circ F(e_1, t) = p_1(e_1)$ and $p_2 \circ G(e_2, t) = p_2(e_2)$ for $e_1 \in E_1$, $e_2 \in E_2$ and $t \in [0, 1]$;
- (2) a strong fibre homotopy equivalence (**sfhe**) if it is a fibre homotopy equivalence and $i'_2 \circ f \circ i_1$ is homotopic to the identity map id_F , where i'_2 is an arbitrary homotopy inverse of i_2 .

Let now X be a connected and pointed space. The m-th Gottlieb group $G_m(X)$ [2, 3] of the space X is the subgroup of the m-th homotopy group $\pi_m(X)$ containing all elements which can be represented by a map $f: \mathbb{S}^m \to X$ such that $f \vee \operatorname{id}_X : \mathbb{S}^m \vee X \to X$ extends (up to homotopy) to a map $F: \mathbb{S}^m \times X \to X$. Observe that $G_m(X) = \pi_m(X)$ provided X is an H-space.

Given $\alpha \in \pi_m(\mathbb{S}^n)$, we deduce that $\alpha \in G_m(\mathbb{S}^n)$ if and only if the Whitehead product $[\alpha, \iota_n] = 0$, where ι_n denotes the homotopy class of $\mathrm{id}_{\mathbb{S}^n}$. In other words, $G_m(\mathbb{S}^n) = \ker [\iota_n, -]$ for the map $[\iota_n, -] : \pi_m(\mathbb{S}^n) \longrightarrow \pi_{m+n-1}(\mathbb{S}^n)$ with $m \geq 1$. Write \sharp for the order of a group element. Then, by [1, Section 2], from this interpretation of Gottlieb groups of spheres, we obtain

$$G_k(\mathbb{S}^n) = (\sharp [\iota_n, \alpha]) \pi_k(\mathbb{S}^n)$$
, if $\pi_k(\mathbb{S}^n)$ is a cyclic group with a generator α . (1)

It follows that $G_k(\mathbb{S}^n) = \pi_k(\mathbb{S}^n)$ for $\sharp[\iota_n, \alpha] = 1$ and $G_k(\mathbb{S}^n) = 0$ for $\sharp[\iota_n, \alpha] = \infty$. Furthermore, because of *H*-structures on the spheres \mathbb{S}^n for n = 1, 3, 7, it holds $G_m(\mathbb{S}^n) = \pi_m(\mathbb{S}^n)$ for any $m \geq 1$.

Given a group G and its subgroup G' < G, write $G/\pm G'$ for the quotient set of G by the relation \sim defined as follows: for $x, y \in G$, $x \sim y$ if and only if $xy \in G'$ or $xy^{-1} \in G'$. Writing \simeq for the homotopy equivalence relation, [5, Theorem 2.3] and [4, Theorem 1, Theorem 2] lead to

Theorem 1. Let m, n > 1. Then:

(1) there are surjections:

- (i) $\pi_m(\mathbb{S}^n)/\pm G_m(\mathbb{S}^n) \longrightarrow \{M_\alpha(\mathbb{S}^m,\mathbb{S}^n); \ \alpha \in \pi_m(\mathbb{S}^n)\}/\simeq;$
- (ii) $\pi_m(\mathbb{S}^n)/\pm G_m(\mathbb{S}^n) \longrightarrow \{\omega_\alpha \colon M_\alpha(\mathbb{S}^m, \mathbb{S}^n) \to \mathbb{S}^n; \ \alpha \in \pi_m(\mathbb{S}^n)\}/fhe;$
- (2) there is a bijection

$$\pi_m(\mathbb{S}^n)/G_m(\mathbb{S}^n) \stackrel{\approx}{\longrightarrow} \{\omega_\alpha \colon M_\alpha(\mathbb{S}^m,\mathbb{S}^n) \to \mathbb{S}^n; \ \alpha \in \pi_m(\mathbb{S}^n)\}/sfhe.$$

We point out that a generalization of the results above has been stated in [7].

2. Main results. As it is well-known, $[\iota_n, \iota_n] = 0$ if and only if n = 1, 3, 7 and $\sharp[\iota_n, \iota_n] = 2$ for n odd and $n \neq 1, 3, 7$, and it is infinite provided n is even. Thus, by [1, 2], we obtain $G_n(\mathbb{S}^n) = \pi_n(\mathbb{S}^n) \cong \mathbb{Z}$ for n = 1, 3, 7, $G_n(\mathbb{S}^n) = 2\pi_n(\mathbb{S}^n) \cong 2\mathbb{Z}$ for n odd and $n \neq 1, 3, 7$, and $G_n(\mathbb{S}^n) = 0$ for n even, where \mathbb{Z} denotes the additive group of integers. Further, by [1, 2] Proposition 1.2, the infinite direct summand of $G_{4n-1}(\mathbb{S}^{2n})$ is $\{3[\iota_{2n}, \iota_{2n}]\}$ unless n = 1.

Observe that in light of the structure of $\pi_m(\mathbb{S}^n)$ (see e.g., [8]) and by the above, $\pi_m(\mathbb{S}^n)/\pm G_m(\mathbb{S}^n)$ is finite, unless m=n and consequently in view of [4, Theorem 2], [5, Theorem 2.3] and Theorem 1, we can complete [5, Theorem 5.1] as follows:

Remark 1. (1) If $m \neq n$ then the sets:

$$\{M_{\alpha}(\mathbb{S}^m, \mathbb{S}^n); \ \alpha \in \pi_m(\mathbb{S}^n)\}/\simeq, \ \{\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^m, \mathbb{S}^n) \to \mathbb{S}^n; \ \alpha \in \pi_m(\mathbb{S}^n)\}/\text{fhe and}$$

 $\{\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^m, \mathbb{S}^n) \to \mathbb{S}^n; \ \alpha \in \pi_m(\mathbb{S}^n)\}/sfhe$ are finite.

- (2) If n is even then two evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^n, \mathbb{S}^n) \to \mathbb{S}^n$ and $\omega_{\beta} \colon M_{\beta}(\mathbb{S}^n, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha, \beta \in \pi_n(\mathbb{S}^n)$ are **fhe** (resp. **sfhe**) if and only if $\alpha = \pm \beta$ (resp. $\alpha = \beta$).
- (3) If n is odd then the evaluation fibration $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n}, \mathbb{S}^{n}) \to \mathbb{S}^{n}$ for $\alpha \in \pi_{n}(\mathbb{S}^{n})$ is **fhe** (resp. **sfhe**) to $\omega_{0} \colon M_{0}(\mathbb{S}^{n}, \mathbb{S}^{n}) \to \mathbb{S}^{n}$ are **fhe** (resp. **sfhe**) if and only if deg α is even and to $\omega_{\iota_{n}} \colon M_{\iota_{n}}(\mathbb{S}^{n}, \mathbb{S}^{n}) \to \mathbb{S}^{n}$ if and only if deg α is odd. Furthermore, $\omega_{0} \colon M_{0}(\mathbb{S}^{n}, \mathbb{S}^{n}) \to \mathbb{S}^{n}$ and $\omega_{\iota_{n}} \colon M_{\iota_{n}}(\mathbb{S}^{n}, \mathbb{S}^{n}) \to \mathbb{S}^{n}$ are **fhe** (resp. **sfhe**) if and only if n = 1, 3, 7.

By [1, Lemma 1.1], $G_m(\mathbb{S}^2) = \pi_m(\mathbb{S}^2)$ for $m \geq 3$. Hence, by Theorem 1, we can state

Remark 2. (1) All path-components of $M(\mathbb{S}^m, \mathbb{S}^2)$ for $m \geq 3$ are homotopy equivalent. (2) All evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^m, \mathbb{S}^2) \to \mathbb{S}^2$ for $\alpha \in \pi_m(\mathbb{S}^2)$ with $m \geq 3$ have the same **fhe** and **sfhe** type.

Because $G_m(\mathbb{S}^n) = \pi_m(\mathbb{S}^n)$ for n = 1, 3, 7, it follows from the above that to examine $M(\mathbb{S}^m, \mathbb{S}^n)$, we are allowed to assume in the sequel that $n \neq 1, 2, 3, 7$ and certainly $1 \leq n \leq m$.

To state further results, write $\eta_2 \in \pi_3(\mathbb{S}^2)$, $\nu_4 \in \pi_7(\mathbb{S}^4)$ and $\sigma_8 \in \pi_{15}(\mathbb{S}^8)$ for the Hopf maps, respectively. We set $\eta_n = E^{n-2}\eta_2 \in \pi_{n+1}(\mathbb{S}^n)$ for $n \geq 2$, $\nu_n = E^{n-4}\nu_4 \in \pi_{n+3}(\mathbb{S}^n)$ for $n \geq 4$ and $\sigma_n = E^{n-8}\sigma_8 \in \pi_{n+7}(\mathbb{S}^n)$ for $n \geq 8$.

According to [1, Section 2], we know the following results:

$$[\iota_n, \eta_n] = 0$$
 if and only if $n \equiv 3 \pmod{4}$ or $n = 2, 6$;

$$[\iota_n, \eta_n^2] = 0$$
 if and only if $n \equiv 2, 3 \pmod{4}$ or $n = 5$,

where $\eta_n^2 = \eta_n \circ \eta_{n+1}$. Hence, by (1), the group $G_{n+k}(\mathbb{S}^n)$ for k = 1, 2 are completely determined. In view of the structure of $\pi_{n+1}(\mathbb{S}^n)$ nad $\pi_{n+2}(\mathbb{S}^n)$ (see e.g., [8]) and Theorem 1, the following extends [5, Theorem 5.2(iii)].

Theorem 2. Consider $M(\mathbb{S}^{n+1}, \mathbb{S}^n)$ for $n \geq 3$ and $M(\mathbb{S}^{n+2}, \mathbb{S}^n)$ for $n \geq 2$.

(1) The space $M(\mathbb{S}^{n+1}, \mathbb{S}^n)$ has two path-components. These components of $M(\mathbb{S}^{n+1}, \mathbb{S}^n)$ have the same homotopy type if and only if n = 6 or $n \equiv 3 \pmod{4}$.

The space $M(\mathbb{S}^{n+2}, \mathbb{S}^n)$ has two path-components. These components has the same homotopy type if and only if n = 5 or $n \equiv 2, 3 \pmod{4}$.

(2) The evaluation fibrations $\omega_0 \colon M_0(\mathbb{S}^{n+1}, \mathbb{S}^n) \to \mathbb{S}^n$ and $\omega_{\iota_n} \colon M_{\iota_n}(\mathbb{S}^{n+1}, \mathbb{S}^n) \to \mathbb{S}^n$ are **fhe** if and only if n = 6 or $n \equiv 3 \pmod{4}$ and are not **sfhe**.

The evaluation fibrations $\omega_0 \colon M_0(\mathbb{S}^{n+2}, \mathbb{S}^n) \to \mathbb{S}^n$ and $\omega_{\iota_n} \colon M_{\iota_n}(\mathbb{S}^{n+2}, \mathbb{S}^n) \to \mathbb{S}^n$ are **fhe** if and only if n = 5 or $n \equiv 2, 3 \pmod{4}$ and are not **sfhe**.

In view of [1, Section 2], $G_7(\mathbb{S}^4) \cong 3\mathbb{Z} \oplus \mathbb{Z}_2$ and

$$\sharp[\iota_n,\nu_n] = \begin{cases} 1, & \text{if } n \equiv 7 \pmod{8} \text{ or } n = 2^i - 3 \text{ for } i \ge 3; \\ 2, & \text{if } n \equiv 1,3,5 \pmod{8} \text{ and } n \ge 9 \text{ and } n \ne 2^i - 3; \\ 12, & \text{if } n \equiv 2 \pmod{4} \text{ and } n \ge 6 \text{ or } n = 4,12; \\ 24, & \text{if } n \equiv 0 \pmod{4} \text{ and } n \ge 8 \text{ unless } n = 12. \end{cases}$$

Thus, (1) leads to a complete description of $G_{n+3}(\mathbb{S}^n)$ for $n \geq 5$. By means of the structure of $\pi_{n+3}(\mathbb{S}^n)$ (see e.g., [8]) and Theorem 1, we obtain

Theorem 3. (1) The number of homotopy types of path-components of the space $M(\mathbb{S}^{n+3}, \mathbb{S}^n)$ and **fhe** types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+3}, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+3}(\mathbb{S}^n)$ is:

- (i) at most ten, if n = 4;
- (ii) only one, if $n \equiv 7 \pmod{8}$ or $n = 2^i 3$ for $i \ge 3$;
- (iii) two if $n \equiv 1, 3, 5 \pmod{8}$ and $n \geq 9$, and $n \neq 2^{i} 3$;
- (iv) at most seven, if $n \equiv 2 \pmod{4}$ and $n \ge 6$ or n = 4, 12;
- (v) at most thirteen, if $n \equiv 0 \pmod{4}$ and $n \geq 8$ unless n = 12.
- (2) The number of **sfhe** types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+3}, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+3}(\mathbb{S}^n)$ is:
 - (i) eighteen, if n = 4;
 - (ii) one, if $n \equiv 7 \pmod{8}$ or $n = 2^i 3$ for $i \ge 3$;
 - (iii) two, if $n \equiv 1, 3, 5 \pmod{8}$ and $n \geq 9$, and $n \neq 2^{i} 3$;
 - (iv) twelve, if $n \equiv 2 \pmod{4}$ and $n \geq 6$ or n = 4, 12;
 - (v) twenty four, if $n \equiv 0 \pmod{4}$ and $n \geq 8$ unless n = 12.

We recall [1, Proposition 2.1, Proposition 2.3]:

Proposition 1. (1) $G_{n+4}(\mathbb{S}^n) = \pi_{n+4}(\mathbb{S}^n)$; $G_{n+5}(\mathbb{S}^n) = \pi_{n+5}(\mathbb{S}^n)$ unless n = 6 and $G_{11}(\mathbb{S}^6) = 3\pi_{11}(\mathbb{S}^6) \cong 3\mathbb{Z}$.

- (2) $G_{n+6}(\mathbb{S}^n) = \pi_{n+6}(\mathbb{S}^n)$ if $n \equiv 4, 5, 7 \pmod{8}$ or $n = 2^i 5$ for $i \geq 4$ and $G_{n+6}(\mathbb{S}^n) = 0$ otherwise.
- (3) $G_{n+7}(\mathbb{S}^n) = 0$ if n = 4, 6, $G_{12}(\mathbb{S}^5) = \pi_{12}(\mathbb{S}^5)$ and $G_{15}(\mathbb{S}^8) \cong 3\mathbb{Z} \oplus \mathbb{Z}_2$.

Further, in view of [1, Section 2]:

$$\sharp[\iota_n,\sigma_n] = \begin{cases} 1, & \text{if } n = 11 \text{ or } n \equiv 15 \pmod{16}; \\ 2, & \text{if } n \text{ is odd and } n \geq 9 \text{ unless } n = 11 \text{ and } n \equiv 15 \pmod{16}; \\ 120, & \text{if } n = 8; \\ 240, & \text{if } n \text{ is even and } n \geq 10. \end{cases}$$

Hence, by means of (1), the group $G_{n+7}(\mathbb{S}^n)$ for $n \geq 9$ has been fully described as well.

In view of the structure of $\pi_{n+4}(\mathbb{S}^n)$, $\pi_{n+5}(\mathbb{S}^n)$ and $\pi_{n+6}(\mathbb{S}^n)$ (see e.g., [8]), Theorem 1 and Proposition 1, we obtain

Theorem 4. (1) The number of homotopy types of path-components of the space $M(\mathbb{S}^{n+4}, \mathbb{S}^n)$, **fhe** and **sfhe** types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+4}, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+4}(\mathbb{S}^n)$ is one.

- (2) The number of homotopy types of:
 - (i) path-components of the space $M(\mathbb{S}^{n+5}, \mathbb{S}^n)$, **fhe** and **sfhe** types types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+5}, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+5}(\mathbb{S}^n)$ is one unless n = 6;
 - (ii) path-components of the space $M(\mathbb{S}^{11}, \mathbb{S}^6)$ and **fhe** types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{11}, \mathbb{S}^6) \to \mathbb{S}^6$ for $\alpha \in \pi_{11}(\mathbb{S}^6)$ is at most two;
 - (iii) **sfhe** types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{11}, \mathbb{S}^{6}) \to \mathbb{S}^{6}$ for $\alpha \in \pi_{11}(\mathbb{S}^{6})$ is three.
- (3) The number of homotopy types of path-components of the space $M(\mathbb{S}^{n+6}, \mathbb{S}^n)$, **fhe** and **sfhe** types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+6}, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+6}(\mathbb{S}^n)$ is one if $n \equiv 4, 5, 7 \pmod{8}$ or $n = 2^i 5$ for $i \geq 4$ and two otherwise.

In view of the structure of $\pi_{n+7}(\mathbb{S}^n)$ (see e.g., [8]), Theorem 1, Proposition 1 and the relations above, we obtain

Theorem 5. The number of homotopy types of path-components of the space $M(\mathbb{S}^{n+7}, \mathbb{S}^n)$ and **fhe** types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+7}, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+7}(\mathbb{S}^n)$ is:

- (i) one, if n = 5, 11 or $n \equiv 15 \pmod{16}$;
- (ii) two, if n is odd and $n \ge 9$ unless n = 5, 11 and $n \equiv 15 \pmod{16}$;
- (iii) at most:
 - (a) eight, if n = 4;
 - (b) thirty one if n = 6;
 - (c) ninety, if n = 8;
 - (d) one hundred twenty one, if n is even and $n \ge 10$.
- (2) The number of **sfhe** types of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+7}, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+7}(\mathbb{S}^n)$ is:
 - (i) one, if n = 5, 11 or $n \equiv 15 \pmod{16}$;
 - (ii) fifteen, if n=4;
 - (iii) sixty, if n = 6;
 - (iv) one hundred eighty, if n = 8;
 - (v) two, if n is odd and $n \ge 9$ unless n = 5, 11 and $n \equiv 15 \pmod{16}$;
 - (vi) two hundred forty, if n is even and $n \ge 10$.

At the end, we recall that in [5, Example 1], two **fhe** evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^2 \vee \mathbb{S}^2, \mathbb{S}^2) \to \mathbb{S}^2$ and $\omega_{\beta} \colon M_{\beta}(\mathbb{S}^2 \vee \mathbb{S}^2, \mathbb{S}^2) \to \mathbb{S}^2$ for $\alpha, \beta \in [\mathbb{S}^2 \vee \mathbb{S}^2, \mathbb{S}^2]$ being not **sfhe** are constructed.

From the results above, we obtain

Corollary 1. There is a list of evaluation fibrations $\omega_{\alpha} \colon M_{\alpha}(\mathbb{S}^{n+k}, \mathbb{S}^n) \to \mathbb{S}^n$ for $\alpha \in \pi_{n+k}(\mathbb{S}^n)$ and some $0 \le k \le 7$ being **fhe** and not **sfhe**.

REFERENCES

- 1. M. Golasiński and J. Mukai, Gottlieb groups of spheres, Topology 47 (2008), 399-430.
- 2. D. Gottlieb, A certain subgroup of the fundamental group, Amer. J. of Math. 87 (1965), 840-856.
- 3. D. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. of Math. 91 (1969), 729-756.
- 4. V.L. Hansen, Equivalence of evaluation fibrations, Invent. Math. 23 (1974), 163-171.
- 5. V.L. Hansen, The homotopy problem for the components in the space of maps of the n-sphere, Quart. J. Math. Oxford Ser. (2) 25 (1974), 313-321.
- 6. S.T. Hu, Homotopy theory, Academic Press, 1959.
- 7. G. Lupton and S.B. Smith, Criteria for components of a function space to be homtopy equivalence, preprint.
- 8. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton, 1962.

Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18, 87-100 Toruń, Poland marek@mat.uni.torun.pl Faculty of Mathematics and Computer Science University of Warmia and Mazury Żołnierska 14, 10-561 Olsztyn, Poland marek@matman.uwm.edu.pl

> Received 26.09.08 Revised 09.12.2008