Trace properties in normed spaces established by using of mixed derivatives

Author
R.Mashiyev, Z.Yucedag
Dicle University, Faculty of Science and Art Mathematics Department, TR 21280 Diyarbakir, Turkey
Abstract
In this paper, trace properties of functions in weighted function spaces established by free ${n}+{1}\leq \left\vert {\Sigma }\right\vert \leq {2}^n$ mixed (non-mixed) derivatives defined in an $n$-dimensional domain are studied. We estimate the ${L}_{p}\left( {\Gamma_s}\right) $ norm of the derivatives of the function defined on an ${s}$-dimensional surface via the weighted ${L}_{ {p}}\left( {G}\right) $ norm of these functions. In order to prove th\i s theorem, we use a special form of the integral representation for differentiable functions.
Keywords
trace property, normed space, mixed derivative
DOI
doi:10.30970/ms.31.1.83-90
Reference
1. Besov O.V., Il'in V.P. and Nikolskii S.M. Integral representation of functions and embedding theorems. -- Moskow, 1996 (in Russian). (English transl. of 1st ed., Vol. 1, 2, Wiley (1979)).

2. Besov O.V. Sobolev's embedding theorem for a domain with irregular boundary// Siberian Math. J. -- 2001. -- V.192, № 3. -- P.323--346.

3. Besov O.V. Integral representations of functions and embedding theorems for a domain with flexible horn condition // Proc. Steklov Inst. Math. -- 1985. -- V.170. -- P.12--30.

4. Dzabrayilov A.D., Mamedov R.S. Integral representations for functions from weighted spaces whose ``indices'' of differential--difference properties are given by $(n+1)$ free vectors // Dokl. Azerb. SSR. -- 1981. -- V.37, № 10. -- P.8--11 (Russian).

5. Dzabrayilov A.D. The properties of functions on the boundary surfaces // Freie Uni. Berlin, Germany. 3rd Internat. ISAAC Congr. (August 20-25, 2001).

6. Sobolev S.L. Applications of functional analysis in mathematical physics. -- NGU, 1963, 3rd ed., Trans. of Math. Monographs, 90, Amer. Math. Soc. provid. RI, 1991.

7. Il'in V.P. On some properties of class of differentiable functions defined in domain // Proc. Steklov Inst. Math. -- 1964. -- V.94.

8. Mashiyev R.A. Integral representations of differentiable functions // AzNIINTI, 4B79, Dep. № 291, 1984.

9. Kudryavtsev L.D. The variation of maddings of regions // in: Metrical Questions of the Theory of Functions and Mappings. № 1. -- Kyiv, 1969. -- P.34--108 (Russian M.R. 44, 6924).

Pages
83-90
Volume
31
Issue
1
Year
2009
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue