Trace properties in normed spaces established by using of mixed derivatives |
|
| Author |
mrabil@dicle.edu.tr, zehra@dicle.edu.tr
Dicle University, Faculty of Science and Art Mathematics Department, TR 21280 Diyarbakir, Turkey
|
| Abstract |
In this paper, trace properties of functions in weighted function spaces established by free ${n}+{1}\leq \left\vert {\Sigma }\right\vert \leq {2}^n$ mixed (non-mixed) derivatives defined in an $n$-dimensional domain are studied. We estimate the ${L}_{p}\left( {\Gamma_s}\right) $ norm of the derivatives of the function defined on an ${s}$-dimensional surface via the weighted ${L}_{ {p}}\left( {G}\right) $ norm of these functions. In order to prove th\i s theorem, we use a special form of the integral representation for differentiable functions.
|
| Keywords |
trace property, normed space, mixed derivative
|
| DOI |
doi:10.30970/ms.31.1.83-90
|
Reference |
1. Besov O.V., Il'in V.P. and Nikolskii S.M. Integral representation of functions and embedding theorems. -- Moskow, 1996 (in Russian). (English transl. of 1st ed., Vol. 1, 2, Wiley (1979)).
2. Besov O.V. Sobolev's embedding theorem for a domain with irregular boundary// Siberian Math. J. -- 2001. -- V.192, № 3. -- P.323--346. 3. Besov O.V. Integral representations of functions and embedding theorems for a domain with flexible horn condition // Proc. Steklov Inst. Math. -- 1985. -- V.170. -- P.12--30. 4. Dzabrayilov A.D., Mamedov R.S. Integral representations for functions from weighted spaces whose ``indices'' of differential--difference properties are given by $(n+1)$ free vectors // Dokl. Azerb. SSR. -- 1981. -- V.37, № 10. -- P.8--11 (Russian). 5. Dzabrayilov A.D. The properties of functions on the boundary surfaces // Freie Uni. Berlin, Germany. 3rd Internat. ISAAC Congr. (August 20-25, 2001). 6. Sobolev S.L. Applications of functional analysis in mathematical physics. -- NGU, 1963, 3rd ed., Trans. of Math. Monographs, 90, Amer. Math. Soc. provid. RI, 1991. 7. Il'in V.P. On some properties of class of differentiable functions defined in domain // Proc. Steklov Inst. Math. -- 1964. -- V.94. 8. Mashiyev R.A. Integral representations of differentiable functions // AzNIINTI, 4B79, Dep. № 291, 1984. 9. Kudryavtsev L.D. The variation of maddings of regions // in: Metrical Questions of the Theory of Functions and Mappings. № 1. -- Kyiv, 1969. -- P.34--108 (Russian M.R. 44, 6924). |
| Pages |
83-90
|
| Volume |
31
|
| Issue |
1
|
| Year |
2009
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |