Entire functions of exponential type, almost periodic in Besicovitch's sense on the real hyperplane

Author
S.Yu.Favorov, O.I.Udodova
Department of Mechanics and Mathematics, Kharkov National,University,61077 Kharkov, Svobody sq. 4, Ukraine, Department of Mathematics, Ukrainian State Academy of Railway,Transport,61050 Kharkov, Feyerbakh sq. 7, Ukraine
Abstract
Suppose that an almost periodic in Besicovitch's sense function $f(x)$ on $\mathbb{R}^p$ is the restriction to $\mathbb{R}^p$ of some entire function of exponential type $\sigma$ in $\mathbb{C}^p$. Then the spectrum of $f$ is contained in the ball $\{x~\in~\mathbb{R}^p:~|x|~\le~\sigma~ \}$.
Keywords
almost periodic function, Besicovitch's sense, entire function, exponential type, spectrum
DOI
doi:10.30970/ms.30.2.147-152
Reference
1. Besicovitch A.S. Almost periodic functions. -- Cambridge university press, 1932. -- 253 p.

2. Boas R. P. Jr. Functions of exponential type. I. // Duke Math. J. -- 1944. -- P.~9--85.

3. Bohr H. Zur Theorie der fastperiodischen Funktionen. III Teil. Dirichlet-entwicklung analytischer Funktionen // Acta Math. -- 1926. -- V.~44. -- P.~237--281.

4. Girya N.P. Almost periodic in Besicovitch's metric functions with the spectrum in a cone // Matematychni Studii. -- 2007. -- V.27, №2. -- P.~162--173.

5. Levin B. Ya. Distribution of zeros of entire functions. -- М.: GITTL. -- 1956. -- 639~p. (in Russian)

6. Udodova O.I. Holomorphic almost periodic functions in various metrics // Vestnik of Kharkov National University. Ser. "Mathematics, Applied Mathematics, and Mechanics". -- 2003. -- V.~52, №589. -- P.~90--107. (in Russian)

7. Udodova O.I. Fourier series of holomorphic almost periodic in Besicovitch's sense functions. // Vestnik of Kharkov National University. Ser. "Mathematics, Applied Mathematics, and Mechanics". -- 2004. -- V.~53, №645. -- P.~53--64. (in Russian)

8. Favorov S.Yu., Udodova O.I. Almost periodic functions in finite--dimensional space with the spectrum in a cone // Math. Physics, Analys, Geometry. -- 2002. -- V.~9, №3. -- P.~465--477.

9. Logvinenko V. N. On one multidimensional generalization of Cartwright's Theorem // Dokl. AN SSSR. -- 1974. -- V.~219, №3. -- P.~546--549. (in Russian)

Pages
147-152
Volume
30
Issue
2
Year
2008
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue