Entire functions of exponential type, almost periodic in Besicovitch's sense on the real hyperplane |
|
| Author |
Sergey.Ju.Favorov@univer.kharkov.ua, udodova@kart.edu.ua
Department of Mechanics and Mathematics, Kharkov National,University,61077 Kharkov, Svobody sq. 4, Ukraine, Department of Mathematics, Ukrainian State Academy of Railway,Transport,61050 Kharkov, Feyerbakh sq. 7, Ukraine
|
| Abstract |
Suppose that an almost periodic in Besicovitch's sense function $f(x)$ on $\mathbb{R}^p$ is the restriction to $\mathbb{R}^p$ of some entire function of exponential type $\sigma$ in $\mathbb{C}^p$. Then the spectrum of $f$ is contained in the ball $\{x~\in~\mathbb{R}^p:~|x|~\le~\sigma~ \}$.
|
| Keywords |
almost periodic function, Besicovitch's sense, entire function, exponential type, spectrum
|
| DOI |
doi:10.30970/ms.30.2.147-152
|
Reference |
1. Besicovitch A.S. Almost periodic functions. -- Cambridge university press, 1932. -- 253 p.
2. Boas R. P. Jr. Functions of exponential type. I. // Duke Math. J. -- 1944. -- P.~9--85. 3. Bohr H. Zur Theorie der fastperiodischen Funktionen. III Teil. Dirichlet-entwicklung analytischer Funktionen // Acta Math. -- 1926. -- V.~44. -- P.~237--281. 4. Girya N.P. Almost periodic in Besicovitch's metric functions with the spectrum in a cone // Matematychni Studii. -- 2007. -- V.27, №2. -- P.~162--173. 5. Levin B. Ya. Distribution of zeros of entire functions. -- М.: GITTL. -- 1956. -- 639~p. (in Russian) 6. Udodova O.I. Holomorphic almost periodic functions in various metrics // Vestnik of Kharkov National University. Ser. "Mathematics, Applied Mathematics, and Mechanics". -- 2003. -- V.~52, №589. -- P.~90--107. (in Russian) 7. Udodova O.I. Fourier series of holomorphic almost periodic in Besicovitch's sense functions. // Vestnik of Kharkov National University. Ser. "Mathematics, Applied Mathematics, and Mechanics". -- 2004. -- V.~53, №645. -- P.~53--64. (in Russian) 8. Favorov S.Yu., Udodova O.I. Almost periodic functions in finite--dimensional space with the spectrum in a cone // Math. Physics, Analys, Geometry. -- 2002. -- V.~9, №3. -- P.~465--477. 9. Logvinenko V. N. On one multidimensional generalization of Cartwright's Theorem // Dokl. AN SSSR. -- 1974. -- V.~219, №3. -- P.~546--549. (in Russian) |
| Pages |
147-152
|
| Volume |
30
|
| Issue |
2
|
| Year |
2008
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |