Metasymmetric and metaalternating groups of infinite rank (in Ukrainian) |
|
| Author |
Kyiv Mohyla Academy, Kyiv, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Silesian University of Technology, Glivice, Poland
|
| Abstract |
We characterize the structure of infinitely iterated wreath products of finite symmetric and alternating groups. The orders of these groups as profinite groups are calculated. A method of constructing finite generating systems of metaalternating groups is described. We construct explicit examples of such generating systems. The normalizer of a metaalternating group in the corresponding metasymmetric group is characterized. We establish that under a natural condition the metaalternating group is perfect.
|
| Keywords |
metasymmetric group, metalternating group, infinite rank
|
| DOI |
doi:10.30970/ms.29.2.139-150
|
Reference |
1. Заводя М.В., Сікора В.С., Сущанський В.І. Системи твірних метазнакозмінних груп скінченного рангу// Наук. вiсн. Чернiвецького ун-ту: Зб. наук. праць. Математика.--- Чернiвцi: Рута, 2006.--- Вип. 314-315.--- С.64--72.
2. Cикора В.С., Сущанский В.И. Системы порождающих групп автоматных подстановок// Кибернетика и системный анализ.--- 2000.--- №3.--- С.121--133. 3. Bhattacharjee M. The probability of generating certain profinite groups by two elements// Israel Journal of Mathematics.--- 1994.--- V.86.--- P.311--329. 4. Quick M. Probabilistic generation of wreath products of non-abelian simple groups// Comm. Algebra.--- 2004.--- V.32.--- P.4753--4768. 5. Quick M. Probabilistic generation of wreath products of non-abelian simple groups. II// Internat. J. of Algebra and Comput.--- 2006.--- V.16.--- №3.--- P.493--503. 6. Woryna A. On generation of wreath products of cyclic groups by two-state time-varying Mealy automata// Internat. J. of Algebra and Comput.--- 2006.--- V.16.--- №2.--- P.397--415. 7. Wilson J. Profinite groups.--- Oxford: Clarendon Press, 1998.--- 284~p. 8. Conder M. More on generators for alternating and symmetric groups// Quarterly. J. of Mathematics.--- 1981.--- V.32.--- P.137--163. 9. Lubotsky A., Wilson J.S. An embedding theorem for profinite groups// Arch. Math. (Basel).--- 1984.--- V.53.--- P.397--399. |
| Pages |
139-150
|
| Volume |
29
|
| Issue |
2
|
| Year |
2008
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |