On generators of positive $C$-semigroups and a note on compact $C$-semigroups |
|
| Author |
sharifa@yu.edu.jo
Yarmouk University,Department of Mathematics
|
| Abstract |
Let $X$ be a Banach space and $T(t),0\leq t<\infty ,$ be a one parameter $C$ -semigroup of bounded linear operators on $X.$ In this paper, we give a characterization for the generator of an exponentially bounded positive contractive $C$-semigroup. Further, sufficient conditions for a $C$-semigroup to be compact are presented.
|
| Keywords |
Banach space, generator, exponentially bounded positive comtractive C-semigroup
|
| DOI |
doi:10.30970/ms.27.2.189-195
|
Reference |
1. Arendt W., Chernoff P., Kato T. A generalization of dissipativity and positive semigroups, J. Operator Theory, 8 (1982), 167--180.
2. Davies E.B., Pang M.M. The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. (3) 55 (1987), 181--208. 3. Clement Ph., Heijmans H. , Angenent S., Van Duijn C., dePagter B. One Parameter Semigroups, North Holland, Amsterdam, 1987. 4. deLaubenfels R. $C$-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44--61. 5. Li. Miao, Falun Huang Characterizations of contractions $C$-semigroups, Proc. Amer. Math. Soc., 126 (1998), No. 4, 1063--1069. 6. Miyadera I., Tanaka N. Exponentially bounded $C$-semigroups and generation of semigroups, J. Math. Analy. and Appl. 143 (1989), 358--378. 7. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, Inc. 1983. 8. Schaefer H. Topological Vector Spaces, Springer Verlag, New York, 1970. 9. Tanaka N. On exponentially bounded $C$-semigroups, Tokyo J. Math., 10 (1987), No. 1, 107--117. 10. van Casteren J.A. Generators of Strongly Continuous Semigroups, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985. |
| Pages |
189-195
|
| Volume |
27
|
| Issue |
2
|
| Year |
2007
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |