УДК 517.9

SH. AL-SHARIF, R. KHALIL

ON GENERATORS OF POSITIVE C -SEMIGROUPS AND A NOTE ON COMPACT C-SEMIGROUPS

Sh. Al-Sharif, R. Khalil. On generators of positive C-semigroups and a note on compact C-semigroups, Matematychni Studii, 27 (2007) 189–195.

Let X be a Banach space and $T(t), 0 \leq t < \infty$, be a one parameter C-semigroup of bounded linear operators on X. In this paper, we give a characterization for the generator of an exponentially bounded positive contractive C-semigroup. Further, sufficient conditions for a C-semigroup to be compact are presented.

Ш. Аль-Шариф, Р. Халил. *О генераторах положительных С-полугрупп и замечание о компактных С-полугруппах* // Математичні Студії. − 2007. − Т.27, №2. − С.189–195.

Пусть X — банахово пространство и $T(t), 0 \le t < \infty$, — однопараметрическая C-полугруппа ограниченных линейных операторов на X. В статье дается характеризация генератора экспоненциально ограниченной положительной сжимающей C-полугруппы. Приводятся достаточные условия компактности C-полугруппы.

Introduction. Let X be a Banach space, L(X) the space of bounded linear operators on X, and C an injective bounded linear operator on X. A strongly continuous family, T(t), $0 \le t < \infty$, of bounded linear operators on X is called a C-semigroup, if T(0) = C and CT(s+t) = T(s)T(t) for all $0 \le s, t < \infty$. If C = I, the identity operator on X, then the C-semigroup is just a strongly continuous semigroup in the ordinary sense. T(t) is called exponentially bounded if there exist $M < \infty$ and $\omega \in R$ such that $||T(t)|| \le Me^{\omega t}$. The operator A defined by

$$Ax = C^{-1} \left(\lim_{t \downarrow 0} \frac{T(t)x - Cx}{t} \right)$$

with

$$D(A) = \left\{ x \in X : \lim_{t \downarrow 0} \frac{T(t)x - Cx}{t} \text{ exists and is in } R(C) \right\}$$

is called the generator of T(t). The complex number λ is in $\rho_C(A)$, the C-resolvent of A, if $(\lambda - A)$ is injective and $R(C) \subseteq R(\lambda - A)$. C-semigroups have been given more attention lately. We refer to [1], [2], [4], [5] and [6] for generators and basic structure of C-semigroups.

Let X be an ordered real Banach space with generating closed positive convex cone X^+ . An operator $B \in L(X)$ is called *positive* if $B(X^+) \subseteq X^+$. A C-semigroup T(t), $t \in [0, \infty)$, is called *positive* if T(t) is positive for all $t \in [0, \infty)$. A C-semigroup T(t) is called *compact*, if T(t) is a compact operator on X for all $t \in (0, \infty)$.

The main object of this paper is to characterize the generator of a positive contractive C-semigroup. Sufficient and necessary conditions for a C-semigroup to be compact are presented.

2000 Mathematics Subject Classification: 47D60, 47B10, 47B65.

Keywords: Banach space, generator, exponentially bounded positive comtractive C-semigroup

doi:10.30970/ms.27.2.189-195

Throughout this paper, X is a Banach space and L(X) is the space of bounded linear operators on X. For a densely defined linear operator A on X, we let $\sigma(A)$ denote the spectrum of A, while $\rho(A)$ denotes the resolvent set of A.

I. Positive C-Semigroups. Let X be an ordered real Banach space with generating closed positive convex cone X^+ and " \leq " as the ordered relation. An element $x \in X$ is called positive if $0 \leq x$. Each element $x \in X$ admits a decomposition x = u - v with $u, v \in X^+$. We refer to [3] and [8] for basic structure of ordered Banach spaces.

Now we introduce the concept of *C-dispersive* operators.

Definition. Let X be an ordered real Banach space with generating closed cone X^+ , and C be a positive bounded linear operator on X. An operator A with domain and range in X is said to be C-dispersive if for every $\lambda > 0$ and, $x \in D(A)$, the inequality inf $\{\|C(\lambda - A)x + u\|, u \in X^+\} \ge \lambda \inf \{\|Cx + u\|, u \in X^+\}$ holds.

Example 1.1. Let X = C(K), the space of continuous functions on the compact metric space K with $||f|| = \sup_{t \in K} |f(t)|$ for all $f \in C(K)$. The closed generating cone for X is $X^+ = \{f \in C(K): f(x) \geq 0 \ , \ x \in K\}$. Each $f \in X$ admits a decomposition $f = f^+ - f^-$, where $f^+(x) = \sup\{f(x); \ 0\}$ and $f^-(x) = (-f(x))^+$. It is clear that both f^+ and $f^- \in X^+$ and $||f|| = \sup_{t \in K} |f(t)| = \sup_{t \in K} (f^+(t) + f^-(t)) = \sup_{t \in K} |f^+(t) + f^-(t)| = ||f^+ + f^-||$.

A C-semigroup T(t), $0 \le t < \infty$, is of **contractions** if $||T(t)x|| \le ||Cx||$ for all $t \ge 0$ and $x \in X$. In this section, we give a characterization of the generator of contraction positive C-semigroup.

Now, we state and prove the main result of this paper.

Theorem 1.2. Let X be an ordered real Banach space with generating closed cone X^+ . Suppose that for all $x \in X$, $||x|| = \inf\{||u+v|| : x = u-v, u, v \in X^+\}$ and $||Cx|| = \inf\{||Cu+Cv|| : x = u-v, u, v \in X^+\}$. If A is a densely defined linear operator with domain and range in X such that $(0, \infty) \subseteq \rho(A)$ and C is a positive bounded linear operator on X, then the operator A generates a strongly continuous positive contraction C-semigroup if and only if A satisfies: (i) $CA \subseteq AC$; (ii) C(D(A)) is dense in R(C); (iii) A is C-dispersive.

Proof. Suppose that A generates a positive contraction C-semigroup T(t). Then by Theorem 4.3, ([5]), (i) and (ii) are satisfied.

To prove (iii). Let $x \in X$ and $\lambda > 0$. Define, $R(\lambda)x = \int_0^\infty e^{-\lambda s} T(s)x \, ds$. Since T(t) is positive for all t > 0, we see that $R(\lambda)$ is positive.

Since T(t) is a contraction C-semigroup, then for $\lambda > 0$ we have,

$$\|\lambda R(\lambda)y\| = \|\lambda \int_{0}^{\infty} e^{-\lambda s} T(s)y \, ds\| \le \int_{0}^{\infty} e^{-\lambda s} \|T(s)y\| \, ds \le \|Cy\|$$
 (1)

But by Lemma 2.8([4]), we have $R(\lambda)x = (\lambda - A)^{-1}Cx$, so, for $u \in X^+$ and $x \in D(CA)$ we have $\lambda \|Cx + R(\lambda)u\| = \lambda \|C(\lambda - A)^{-1}(\lambda - A)x + R(\lambda)u\| = \|\lambda(R(\lambda)(\lambda - A)x + R(\lambda)u)\| = \|\lambda R(\lambda)((\lambda - A)x + u)\|$. Using (1) we get $\lambda \|Cx + R(\lambda)u\| \le \|C(\lambda - A)x + Cu\| = \|C(\lambda - A)x + v\|$, where, v = Cu is positive. But $R(\lambda)$ is a positive operator. It follows that

 $R(\lambda)u$ is positive, and so $\lambda \|Cx + w\| \le \|C(\lambda - A)x + v\|$, where, $w, v \in X^+$. This implies inf $\{\|C(\lambda - A)x + v\|, v \in X^+\} \ge \lambda \inf \{\|Cx + u\|, u \in X^+\}$. Thus A is C-dispersive. Conversely. Define another norm on R(C), $\|.\|_1$ as follows

 $||Cx||_1 = \max(\inf\{||Cx + u||, u \in X^+\}, \inf\{||-Cx + u||, u \in X^+\}).$

It is known, [1], that $p(y) = \inf\{\|y + u\|, u \in X^+\}$ is the canonical half-norm on X and $\max(p(y), p(-y))$ is a norm on R(C) satisfying $\|Cx\|_1 \le \|Cx\|$ for all $x \in X$.

Now, if (Cx_n) is a Cauchy sequence in $(X, \|.\|_1)$, then there exist double sequences $(u_{n,m})$, $(v_{n,m})$ in X^+ such that $\lim_{n,m\to\infty} ||Cx_n - Cx_m + u_{n,m}|| = 0$, and $\lim_{n,m\to\infty} ||Cx_m - Cx_n + v_{n,m}|| = 0$. Hence

 $\lim_{n,m\to\infty} ||u_{n,m} + v_{n,m}|| \le \lim_{n,m\to\infty} ||Cx_n - Cx_m + u_{n,m}|| + \lim_{n,m\to\infty} ||Cx_m - Cx_n + v_{n,m}|| = 0.$

Since $||u-v|| = \inf \{||a+b|| : u-v = a-b, a, b \in X^+\}$, we get $\lim_{n,m\to\infty} ||u_{n,m}-v_{n,m}|| = 0$.

Thus $\lim_{n,m\to\infty} ||u_{n,m}|| = \lim_{n,m\to\infty} ||v_{n,m}|| = 0$. Further $\lim_{n,m\to\infty} ||Cx_n - Cx_m|| = \lim_{n,m\to\infty} ||Cx_n - Cx_m|| = 0$. Thus $\lim_{n,m\to\infty} ||Cx_n - Cx_m|| = 0$. Thus $\lim_{n,m\to\infty} ||Cx_n - Cx_m|| = 0$. Thus $\lim_{n,m\to\infty} ||Cx_n - Cx_m|| = 0$.

 $(X, \|.\|)$. But X is complete. It follows that $(\overline{R(C)}, \|.\|_1)$ is complete. By the Open Mapping Theorem there exists $\delta > 0$ such that $\delta \|Cx\| \leq \|Cx\|_1$. Since A is C-dispersive,

 $\inf\{\|C(\lambda - A)x + u\|, u \in X^+\} \ge \lambda \inf\{\|Cx + u\|, u \in X^+\}.$

Thus $\lambda \|Cx\|_1 \leq \|C(\lambda - A)x\|$ and so, $\delta \lambda \|Cx\| \leq \|C(\lambda - A)x\|$, and so $C(\lambda - A)$ is one-one. Since D(A) is dense, it follows that the operator A is closable. To see that: let $y \in X$ and x_n be a sequence in D(A) such that $\lim_{n \to \infty} x_n = 0$, $\lim_{n \to \infty} Ax_n = y$. Density of D(A) in X gives a sequence y_n in D(A) such that $\|y_n - y\| \leq \frac{1}{n}$. But, since $\delta \lambda \|Cx\| \leq \|C(\lambda - A)x\|$, we have $\|C(\lambda x_n + y_m) - AC(x_n + \lambda^{-1}y_m)\| \geq \delta \lambda \|Cx_n + C\lambda^{-1}y_m\| = \delta \|C\lambda x_n + Cy_m\|$. As $n \to \infty$, we have, $\|Cy_m - y - \lambda^{-1}ACy_m\| \geq \delta \|Cy_m\|$. As $\lambda \to \infty$, we have, $\|Cy_m - Cy\| \geq \delta \|Cy_m\|$. But, $\delta \|Cy_m\| \leq \|Cy_m - Cy\| \leq \|C\|\|y_m - y\| \leq \frac{\|C\|}{n}$. Hence, $\|y\| = \lim_{n \to \infty} \|y_n\| = 0$, and

But, $\delta \|Cy_m\| \leq \|Cy_m - Cy\| \leq \|C\| \|y_m - y\| \leq \frac{\|C\|}{m}$. Hence, $\|y\| = \lim_{m \to \infty} \|y_m\| = 0$, and y = 0. Consequently, A is closable and the inequality $\delta \lambda \|Cx\| \leq \|C(\lambda - \overline{A})x\|$ holds true. Further, $(\lambda - \overline{A})$ is one-one.

Since $(0, \infty) \subseteq \rho(A)$, it follows that $\overline{(\lambda - A)D(A)} = X$ for all $\lambda > 0$. Hence, if $y \in X$, there exists a sequence $x_n \in D(A)$ such that $y_n = (\lambda - A)x_n$ converges to y. But $R(\lambda, A)$ is bounded. Thus $x_n = R(\lambda, A)y_n$ is convergent, say to x. Since \overline{A} is closed, it follows that $x \in D(\overline{A})$ and $(\lambda - \overline{A})x = y$. Hence $(\lambda - \overline{A})D(\overline{A}) = X$.

Now, let $x \in D(\overline{A})$ and $\varepsilon > 0$. Then, by the property of the space and the positivity of the linear operator C, there exists $u, v \in X^+$ such that $\lambda x - \overline{A}x = u - v$. So $\lambda Cx - \overline{A}Cx = Cu - Cv$ and $\|\lambda Cx - \overline{A}Cx\| \ge \|Cu + Cv\| - \varepsilon$. Since $(\lambda - \overline{A})D(\overline{A}) = X$, then there exist $g, h \in D(\overline{A})$ such that $u = \lambda g - \overline{A}g$ and $v = \lambda h - \overline{A}h$. Since A is C-dispersive, its closure \overline{A} is C-dispersive too. Consequently, $\inf\{\|C(\lambda - \overline{A})g + b\|, b \in X^+\} \ge \lambda\inf\{\|Cg + z\|, z \in X^+\}$. But $C(\lambda - \overline{A})g \in X^+$. It follows that $\inf\{\|C(\lambda - \overline{A})g + b\|, b \in X^+\} = 0$ and so $\inf\{\|Cg + z\|, z \in X^+\} = 0$ which implies that $Cg \in X^+$. Similarly $Ch \in X^+$. Since

 $(\lambda - \overline{A})Cx = Cu - Cv = (\lambda - \overline{A})Cg - (\lambda - \overline{A})Ch = (\lambda - \overline{A})C(g - h),$

and $\lambda - \overline{A}$ is one-one, it follows that Cx = C(g - h).

Now $\|\lambda Cx - \overline{A}Cx\| \ge \|Cu + Cv\| - \varepsilon = \|(\lambda - \overline{A})Cg + (\lambda - \overline{A})Ch\| - \varepsilon = \|(\lambda - \overline{A})C(g + h)\| - \varepsilon \ge \lambda \inf \{\|C(g+h) + 2b\|, b \in X^+\} - \varepsilon \ge \lambda \inf \{\|Cg + b + Ch + b\|, b \in X^+\} - \varepsilon.$ Since $\|z + b\| \ge \|z - b\|, z, b \in X^+$, it follows that $\|\lambda Cx - \overline{A}Cx\| \ge \lambda \|Cg - Ch\| - \varepsilon = \lambda \|Cx\| - \varepsilon.$

Since ε is arbitrary, we conclude that $\|\lambda Cx - \overline{A}Cx\| \ge \lambda \|Cx\|$.

Now for $\lambda > 0$, we have

 $||Cx|| = ||(\lambda - \overline{A})(\lambda - \overline{A})^{-1}Cx|| = ||C(\lambda - \overline{A})(\lambda - \overline{A})^{-1}x|| \ge \lambda ||(\lambda - \overline{A})^{-1}Cx||,$ which implies by Theorem 4.3 ([5]), that \overline{A} generates a contraction C-semigroup.

For $x \in X^+$, we have $||Cx|| = ||C(\lambda - \overline{A})(\lambda - \overline{A})^{-1}x||$. But \overline{A} is C-dispersive. Then, inf $\{||Cx + b||, b \in X^+\} = \inf\{||C(\lambda - \overline{A})(\lambda - \overline{A})^{-1}x + b||, b \in X^+\} \ge \lambda \inf\{||(\lambda - \overline{A})^{-1}Cx + z||, z \in X^+\}$. Positivity of Cx implies that inf $\{||Cx + b||, b \in X^+\} = 0$ and so $\inf\{||(\lambda - \overline{A})^{-1}Cx + z||, z \in X^+\} = 0$. Hence $(\lambda - \overline{A})^{-1}Cx$ is positive and so $(\lambda - \overline{A})^{-1}$ leaves X^+ invariant. Now, inf $\{||Cx + b||, b \in X^+\} = \inf\{||C(\lambda - \overline{A})^2(\lambda - \overline{A})^{-2}x + b||, b \in X^+\}$ $\ge \lambda \inf\{||(\lambda - \overline{A})(\lambda - \overline{A})^{-2}Cx + z||, z \in X^+\}$. Since Cx is positive, it follows that $(\lambda - \overline{A})^{-2}$ leaves CX^+ invariant. Using induction, one gets $(\lambda - \overline{A})^{-n}CX^+ \subseteq CX^+$. But by Theorem 3.2 ([6]), $T(t)x = \lim_{m \to \infty} (I - \frac{t}{m}\overline{A})^{-m}Cx$. It follows that T(t) is a positive C-semigroup.

Remark 1.3. One can prove Theorem 1.3 by replacing the condition $||Cx|| = \inf\{||Cu + Cv|| : x = u - v, u, v \in X^+\}$ by the assumption $\overline{CX^+} = X^+$.

The proof goes as follows.

Proof. Now: let $x \in D(\overline{A})$ and $\varepsilon > 0$. Then by the property of the space and the positivity of the linear operator C, there exists $u, v \in X^+$ such that $\lambda Cx - \overline{A}Cx = u - v$ and $\|\lambda Cx - \overline{A}Cx\| \ge \|u + v\| - \varepsilon$. Since $\overline{CX^+} = X^+$, there exist sequences $(x_n), (y_n)$ in X^+ such that $\lim_{n \to \infty} Cx_n = u$ and $\lim_{n \to \infty} Cy_n = v$. Hence $\lim_{n \to \infty} C(x_n + y_n) = u + v$ and $\lim_{n \to \infty} C(x_n - y_n) = u - v$. Continuity of the norm implies that $\lim_{n \to \infty} \|C(x_n + y_n)\| = \|u + v\|$ and $\lim_{n \to \infty} \|C(x_n - y_n)\| = \|u - v\|$.

Now for $\varepsilon > 0$ there exist N such that for all n > N we have $-\varepsilon < \|C(x_n + y_n)\| - \|u + v\| < \varepsilon$ or $-\varepsilon + \|u + v\| < \|C(x_n + y_n)\| < \|u + v\| + \varepsilon$. Since $(\lambda - \overline{A})D(\overline{A}) = X$, for each n > N, there exist $g_n, h_n \in D(\overline{A})$ such that $x_n = \lambda g_n - \overline{A}g_n$ and $y_n = \lambda h_n - \overline{A}h_n$. Since A is C-dispersive, its closure \overline{A} is C-dispersive too, and so for each n > N, we have

$$\inf \left\{ \left\| C(\lambda - \overline{A})g_n + b \right\|, \ b \in X^+ \right\} \ge \lambda \inf \left\{ \left\| Cg_n + z \right\|, \ z \in X^+ \right\}.$$

Since $C(\lambda - \overline{A})g_n \in X^+$, it follows that $\inf\{\|C(\lambda - \overline{A})g_n + b\|, b \in X^+\} = 0$ and so $\inf\{\|Cg_n + z\|, z \in X^+\} = 0$ which implies that $Cg_n \in X^+$. Similarly $Ch_n \in X^+$. Now $(\lambda - \overline{A})Cx = u - v = \lim_{n \to \infty} C(x_n - y_n) = \lim_{n \to \infty} (\lambda - \overline{A})C(g_n - h_n)$.

Since $\lambda - \overline{A}$ is a closed operator, one has

$$(\lambda - \overline{A})Cx = \lim_{n \to \infty} (\lambda - \overline{A})C(g_n - h_n) = (\lambda - \overline{A})\lim_{n \to \infty} C(g_n - h_n).$$

But $\lambda - \overline{A}$ is one-one. It follows that $Cx = \lim_{n \to \infty} C(g_n - h_n)$.

Now $\|\lambda Cx - \overline{A}Cx\| \ge \|u+v\| - \varepsilon \ge \|(\lambda - \overline{A})Cg_n + (\lambda - \overline{A})Ch_n\| - 2\varepsilon = \|(\lambda - \overline{A})C(g_n + h_n)\| - 2\varepsilon \ge \lambda \inf\{\|C(g_n + h_n) + 2b\|, b \in X^+\} - 2\varepsilon \ge \lambda \inf\{\|Cg_n + b + Ch_n + b\|, b \in X^+\} - 2\varepsilon.$ Since $\|z+b\| \ge \|z-b\|, z, b \in X^+$, it follows that $\|\lambda Cx - \overline{A}Cx\| \ge \lambda \|Cg_n - Ch_n\| - 2\varepsilon$, and as n goes to infinity we have $\|\lambda Cx - \overline{A}Cx\| \ge \lambda \|Cx\| - 2\varepsilon$. Since ε is arbitrary we conclude that $\|\lambda Cx - \overline{A}Cx\| \ge \lambda \|Cx\|$. Further $\|Cx\| = \|(\lambda - \overline{A})(\lambda - \overline{A})^{-1}Cx\| = \|C(\lambda - \overline{A})(\lambda - \overline{A})^{-1}x\| \ge \lambda \|(\lambda - \overline{A})^{-1}Cx\|$. Using Theorem 4.3 ([5]), we obtain that \overline{A} generates a contraction C-semigroup. The rest of the proof goes as the proof of the theorem.

II. Compact C-Semigroups. In this section we present necessary conditions and sufficient conditions for a C-semigroup to be compact.

Proposition 2.1. Let T(t) be a strongly continuous C-semigroup of bounded linear operators on a Banach space X. If T(t) is compact for some $t_0 > 0$, then CT(t) is compact for all $t > t_0$.

Proof. Suppose $T(t_0)$ is compact for some $t_0 > 0$. Then, $CT(t) = CT(t - t_0 + t_0) = T(t - t_0)T(t_0)$. Thus CT(t) is compact for all $t > t_0$.

Theorem 2.2. Let T(t) be a strongly continuous exponentially bounded C-semigroup of bounded linear operators on a Banach space X. If T(t) is compact for all $t > t_0$ for some $t_0 > 0$, then the map $t \to CT(t)$ is continuous from the big in the uniform operator topology for all $t > t_0$.

Proof. Let $||T(s)|| \leq M$ for $0 \leq s \leq 1$. Then for $t > t_0$, the set $U_t = \{T(t)x : ||x|| \leq 1\}$ is relatively compact. Now: for $\varepsilon > 0$, the collection $W = \{B(T(t)x, \frac{\varepsilon}{2(M+||C||)}) : ||x|| \leq 1\}$ is an open cover for the compact set $\overline{U_t}$. So W has a finite subcover. Thus there exist $x_1, x_2, ..., x_N$ in X such that $\bigcup_{i=1}^N B(T(t)x, \frac{\varepsilon}{2(M+||C||)})$ covers U_t . That means for each $x \in X$; $||x|| \leq 1$ there exists j (j depends on x), $1 \leq j \leq N$ such that $||T(t)x - T(t)x_j|| \leq \frac{\varepsilon}{2(M+||C||)}$. But T(t) is strongly continuous. So there exists h_0 , $0 \leq h_0 \leq 1$ such that $||T(t+h)x_j - T(t)x_j|| \leq \varepsilon/(2||C||)$ for $0 \leq h \leq h_0$ and all j, $1 \leq j \leq N$.

Now, for $0 \le h \le h_0$, and $x \in X$; $||x|| \le 1$, set J = ||CT(t+h)x - CT(t)x||. Then:

$$J = \|CT(t+h)x - CT(t+h)x_{j} + CT(t+h)x_{j} - CT(t)x_{j} + CT(t)x_{j} - CT(t)x\|$$

$$\leq \|CT(t+h)x - CT(t+h)x_{j}\| + \|CT(t+h)x_{j} - CT(t)x_{j}\| + \|CT(t)x_{j} - CT(t)x\|$$

$$\leq \|T(t)T(h)x - T(t)T(h)x_{j}\| + \|C\|\|T(t+h)x_{j} - T(t)x_{j}\| + \|C\|\|T(t)x_{j} - T(t)x\|$$

$$\leq \|T(h)\|\|T(t)x - T(t)x_{j}\| + \|C\|\|T(t+h)x_{j} - T(t)x_{j}\| + \|C\|\|T(t)x_{j} - T(t)x\|$$

$$\leq M\frac{\varepsilon}{2(M+\|C\|)} + \|C\|\frac{\varepsilon}{2\|C\|} + \frac{\|C\|\varepsilon}{2(M+\|C\|)} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus CT(t) is continuous in the uniform operator topology.

Theorem 2.3. Let T(t) be a strongly continuous exponentially bounded C-semigroup of bounded linear operators on a Banach space X. If T(t) is compact for some $t_0 > 0$, then the map $t \to C^2T(t)$ is continuous from the big in the uniform operator topology for all $t > t_0$.

Proof. Since $T(t_0)$ is compact, by Proposition 2.1 it follows that CT(t) is compact for all $t > t_0$. The rest of the proof is similar to the proof of Theorem 2.2 by taking $U_t = \{CT(t)x : \|x\| \le 1\}$ and $W = \{B(CT(t)x, \frac{\varepsilon}{2(M+\|C\|)}) : \|x\| \le 1\}$.

Corollary 2.4. Let T(t) be a strongly continuous exponentially bounded C-semigroup such that T(t) is compact for some $t_0 > 0$. If Rang(C) is closed then the map $t \to T(t)$ is continuous from the big in the uniform operator topology.

Proof. Since T(t) is compact for some $t_0 > 0$, by Theorem 2.3, it follows that $C^2T(t)$ is continuous in the uniform operator topology. Further, since C is a bounded one-one linear operator with a closed range, the Open Mapping Theorem implies that C^{-1} is bounded. Hence T(t) is continuous in the uniform operator topology.

Theorem 2.5. Let T(t) be a strongly continuous C-semigroup of bounded linear operators on a Banach space X with generator A such that $||T(t)|| \leq Me^{\omega t}$. If T(t) is compact for all t > 0, then $C^2R(\lambda, A)$ is compact for all $\lambda \in \rho(A)$.

Proof. Let $\lambda \in \rho(A)$, $\lambda \in R$ and $\lambda > \omega$. Then by Theorem 3.3, ([4]) we have

$$CR(\lambda, A)x = R(\lambda, A)Cx = \int_{-\infty}^{\infty} e^{-\lambda s} T(s)x \, ds$$

 $CR(\lambda,A)x = R(\lambda,A)Cx = \int\limits_0^\infty e^{-\lambda s}T(s)x\,ds.$ Define $R_t(\lambda,A)x = C\int_t^\infty e^{-\lambda s}T(s)xds = \int_t^\infty e^{-\lambda s}CT(s-t+t)xds = \int_t^\infty e^{-\lambda s}T(s-t)T(t)xds$ $=T(t)\int_t^\infty e^{-\lambda s}T(s-t)xds$. Since T(t) is compact and the operator $P, P(x)=\int_t^\infty e^{-\lambda s}T(s-t)ds$. $t)x\,ds$ is a bounded operator in L(X) for $\lambda > \omega$ and all t > 0, the operators $R_t(\lambda,A)$ is compact for all t > 0 and all $\lambda \in R$, $\lambda > \omega \geq 0$. Further,

$$\|R_t(\lambda,A) - C^2 R(\lambda,A)\| = \|C\int_t^{\infty} e^{-\lambda s} T(s) \, ds - C\int_0^{\infty} e^{-\lambda s} T(s) \, ds\| \le \|\int_0^t e^{-\lambda s} CT(s) \, ds\| \le \|S_t - C_t - S_t -$$

 $M\|C\|\int_{0}^{t}e^{(\omega-\lambda)s}\,ds$. Since $\lim_{t\to 0^{+}}M\|C\|\int_{0}^{t}e^{(\omega-\lambda)s}\,ds=0$, $R_{t}(\lambda,A)$ is compact for all t>0, it follows that $C^2R(\lambda, A)$ is compact for all $\lambda \in R$, $\lambda > \omega \geq 0$.

Since $C^2R(\lambda, A)$ is compact for $\lambda \in \rho(A)$ and $\lambda > \omega$, the resolvent identity

$$C^{2}R(\mu, A) = C^{2}R(\lambda, A) + (\lambda - \mu)C^{2}R(\lambda, A)R(\mu, A)$$

implies $C^2R(\mu, A)$ is compact that for any $\mu \in \rho(A)$.

Theorem 2.6. Let $(T(t))_{t\geq 0}$ be a differentiable strongly continuous C-semigroup on a Banach space X with generator A such that $||T(t)|| \leq Me^{\omega t}$. If: (i) R(C) is dense in X, (ii) there exists $\lambda_0 \in \rho(A)$ such that $R(\lambda_0, A)$ is compact, (iii) T(t) is uniformly continuous, then T(t) is compact for all t > 0.

Proof. Let $\lambda_0 \in \rho(A)$ and $\lambda_0 = 0$. Define $B(t)x = \int_0^t T(s)x \ ds$. Then $B \in L(X)$ and $AB(t)x = A \int_0^t T(s)x \, ds = T(t)x - Cx = (T(t) - C)x$ for all $x \in D(C)$, Lemma 2.7 ([4]). Hence -AB(t)x = (0-A)B(t)x = (C-T(t))x. So B(t)x = R(0,A)(C-T(t))x. Since D(A) and R(C) are both dense in X, B(t) = R(0, A)(C - T(t)). But R(0, A) is compact. So B(t) is compact for all t > 0.

Now, since T(t) is uniformly continuous, B'(t) exists and $B'(t) = \lim_{h \to 0} \frac{1}{h} (B(t+h) - B(t)) = \lim_{n \to \infty} n \left(B\left(t + \frac{1}{n}\right) - B(t) \right) = \lim_{n \to \infty} n \left(R(0, A) \left(C - T\left(t + \frac{1}{n}\right) \right) - R(0, A) \left(C - T(t) \right) \right) = \lim_{n \to \infty} n R(0, A) \left(T(t) - T\left(t + \frac{1}{n}\right) \right).$

Define: $D_n(t) = nR(0,A)(T(t)-T(t+\frac{1}{n}))$. Since R(0,A) is compact, it follows that $D_n(t)$ is compact for all t>0 and all $n\in N$. But $B'(t)=\frac{d}{dt}\int_0^t T(s)\,ds=T(t)$, since T(t)is uniformly continuous. Thus T(t) is compact for all t > 0.

For $\lambda_0 > 0$, define $S(t) = e^{-\lambda_0 t} T(t)$. Then if A is the generator of T(t), then $A - \lambda_0$ is the generator of $e^{-\lambda_0 t} T(t)$. So if $\lambda_0 \in \rho(A - \lambda_0)$, then $0 \in \rho(A)$.

Theorem 2.7. Let T(t) be a strongly continuous C-semigroup of bounded linear operators on a Banach space X with generator A such that $||T(t)|| \leq Me^{\omega t}$. If $R(\lambda, A)$ is compact for all $\lambda \in \rho(A)$ and T(t) is uniformly continuous, then T(t) is compact for all t > 0.

Proof. Since $R(\lambda,A)$ is compact for all $\lambda \in \rho(A)$ and $T(t) \in L(X)$ for all t>0, it follows that $\lambda R(\lambda,A)T(t)$ is compact. But, for $\lambda \in R$ and $\lambda > \omega$, we have $CR(\lambda,A)x = R(\lambda,A)Cx = \int\limits_0^\infty e^{-\lambda s}T(s)x\,ds$. Theorem 3.3 ([4]) now implies (noting that C is injective) $R(\lambda,A) = C^{-1}\int\limits_0^\infty e^{-\lambda s}T(s)\,ds. \text{ Let } J = \|\lambda R(\lambda,A)T(t) - T(t)\|. \text{ Then } J = \|\lambda C^{-1}\int\limits_0^\infty e^{-\lambda s}T(s)T(t)\,ds - \lambda\int\limits_0^\infty e^{-\lambda s}T(t)\,ds\| = \|\lambda C^{-1}\int\limits_0^\infty e^{-\lambda s}CT(s+t)\,ds - \lambda\int\limits_0^\infty e^{-\lambda s}T(t)\,ds\| = \|\lambda C^{-1}C\int\limits_0^\infty e^{-\lambda s}T(s+t)\,ds - \lambda\int\limits_0^\infty e^{-\lambda s}T(t)\,ds\| = \|\lambda\int\limits_0^\infty e^{-\lambda s}(T(s+t) - T(t))\,ds\|$ $\leq \lambda\int\limits_0^\infty e^{-\lambda s}\|(T(s+t) - T(t))\|ds = \int\limits_0^b e^{-\lambda s}\|(T(s+t) - T(t))\|ds + \int\limits_0^\infty e^{-\lambda s}\|(T(s+t) - T(t))\|ds$ $\leq \sup\limits_{0\leq s\leq b}\|(T(s+t) - T(t))\|\int\limits_0^b e^{-\lambda s}ds + \int\limits_0^\infty e^{-\lambda s}M(e^{\omega(s+t)} + e^{\omega t})ds \leq \varepsilon + Me^{\omega t}(\frac{e^{(\omega-\lambda)b}}{\lambda-\omega} - \frac{e^{-\lambda b}}{\lambda}),$ which implies $\lim\limits_{\lambda\to\infty}\sup\|\lambda R(\lambda,A)T(t) - T(t)\| \leq \varepsilon$ for every b>0. Since b is arbitrary, we get $\lim\limits_{\lambda\to\infty}\|\lambda R(\lambda,A)T(t) - T(t)\| = 0$. Thus T(t) is compact.

REFERENCES

- 1. Arendt W., Chernoff P., Kato T. A generalization of dissipativity and positive semigroups, J. Operator Theory, 8 (1982), 167–180.
- 2. Davies E.B., Pang M.M. The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. (3) 55 (1987), 181–208.
- 3. Clėment Ph., Heijmans H., Angenent S., Van Duijn C., dePagter B. One Parameter Semigroups, North Holland, Amsterdam, 1987.
- 4. deLaubenfels R. C-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44-61.
- 5. Li. Miao, Falun Huang Characterizations of contractions C-semigroups, Proc. Amer. Math. Soc., 126 (1998), No. 4, 1063–1069.
- 6. Miyadera I., Tanaka N. Exponentially bounded C-semigroups and generation of semigroups, J. Math. Analy. and Appl. 143 (1989), 358–378.
- 7. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, Inc. 1983.
- 8. Schaefer H. Topological Vector Spaces, Springer Verlag, New York, 1970.
- 9. Tanaka N. On exponentially bounded C-semigroups, Tokyo J. Math., 10 (1987), No. 1, 107–117.
- 10. van Casteren J.A. Generators of Strongly Continuous Semigroups, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.

Yarmouk University Department of Mathematics sharifa@yu.edu.jo