A remark on asymptotic dimension and digital dimension of finite metric spaces

Author
V.Chatyrko, M.Zarichnyi
University of Linköping, Ivan Franko National University of Lviv
Abstract
Relationships between the asymptotic dimension (in the sense of Gromov) of a proper metric space and the so-called digital dimension of its finite subspaces are established.
Keywords
asymptotic dimension, digital dimension, finite metric space
DOI
doi:10.30970/ms.27.1.100-104
Reference
1. Bell G.C., Dranishnikov A.N., Keesling J.E. On a formula for the asymptotic dimension of free products, Fundam. Math. 183, No.1 (2004), 39--45.

2. Bell G., Dranishnikov A. On asymptotic dimension of groups, Algebr. Geom. Topol. 1 (2001), 57--71.

3. Bell G., Dranishnikov A. On asymptotic dimension of groups acting on trees, Geom. Dedicata 103 (2004) 89--101.

4. Dranishnikov A. Asymptotic topology, Russian Math. Surveys 55, No 6 (2000), 71--116.

5. Dranishnikov A. On asymptotic inductive dimension, JP J. Geom. Topol. 1 , no. 3 (2001), 239--247.

6. Dranishnikov A.N. On hypersphericity of manifolds with finite asymptotic dimension, Trans. Am. Math. Soc. 355, No.1 (2003), 155--167.

7. Dranishnikov A. Groups with a polynomial dimension growth, preprint.

8. Dranishnikov A. Dimension theory local and global, preprint.

9. Dranishnikov A., Keesling J.E., Uspenskij V.V. On the Higson corona of uniformly contractible spaces Topology, 37, No. 3 (1998), 791--803.

10. Dranishnikov A., Zarichnyi M. Universal spaces for asymptotic dimension, Topology Appl. 140, No.2-3 (2004), 203--225.

11. Gromov M. Asymptotic invariants of infinite groups. Geometric group theory, Vol. 2 (Sussex, 1991), 1--295, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993.

12. Ostrand Ph. A. Dimension of metric spaces and Hilbert's problem $13$, Bull. Amer. Math. Soc. 71 (1965), 619--622.

Pages
100-104
Volume
27
Issue
1
Year
2007
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue