Noncommutative $n$-elementary rings (in Ukrainian)

Author
B.V.Zabavskyi, O.M.Romaniv
Ivan Franko National University of Lviv
Abstract
In this paper it is proved that any right Bezout ring of stable range $n$ is an $(n+1)$-elementary ring. It is shown, that over any right Hermite ring any unimodular row of length 3 is complemented to an elementary matrix.
Keywords
Bezout ring, stable range, Hermite ring
DOI
doi:10.30970/ms.27.1.95-99
Reference
1. Ara P., Goodearl K., O'Meara K.C., Pardo E. Diagonalization of matrices over regular rings // Linear Algebra and Appl. -- 1987. -- V.265. -- P.147-163.

2. Menal P., Moncasi J. On regular rings with stable range 2 // J. Pure Appl. Algebra. --1982. -- V.24. -- P.25-40.

3. Zabavsky B.V. Diagonalizability theorem for matrices over rings with finite stable range // Alg. and Discr. Math. --2005. --№1. --151-165.

4. Henriksen M. On a class of regular rings that are elementary divisor rings // Arch. Math. -- 1973. -- V.24, №2. -- P.133-141.

5. Levy L.S. Sometimes only square matrices can be diagonalized // Proc. Amer. Math. Soc. -- 1975. -- V.52. -- P.18-22.

6. Chen H. Generalized stable exchange rings // South Asian Bull. Math. -- 2000. -- V.24 -- P.19-24.

7. Zabavsky B.V. Diagonalization of matrices // Математичні студії. --2005. -- Т.23, №1. -- C.3-10.

8. Zabavsky B.V. Diagonalization of matrices over ring with finite stable rank // Вісник Львівського університету. -- 2003. -- Вип.61. -- С.206-210.

9. Bougaut B. Anneaux Quasi-Euclidiens // These de docteur troisieme cycle. -- 1976. -- V.67.

10. Cooke G.A. A weakening of the euclidean property for integral domains and applications to algebraic number theory. I. // J. fur die Reine and Angw. Math. --1976. -- V.282. -- P. 133-156.

11. Zabavsky B., Romaniv O. Noncommutative rings with elementary reduction of matrices // Вопросы алгебры (Гомель). -- 1999. -- Вып.14. -- С.79-85.

12. Henriksen M. Some remarks about elementary divisor rings // Michigan Math. J. -1955/56. -- V.3. -- P.159-163.

13. Vaserstein L.N. The stable rank of rings and dimensionality of to\-po\-lo\-gical spaces // Functional Anal. Appl. -- 1971. -- V.5. -- P.102-110.

Pages
95-99
Volume
27
Issue
1
Year
2007
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue