Lie algebras associated with wreath products of elementary abelian groups

Author
N.V.Bondarenko
Kyiv Taras Shevchenko National University,Faculty of mechanics and mathematics
Abstract
We study Lie algebras associated with the lower central series of the wreath product $P_{m,n}$ of $m$ copies of elementary abelian $p$-groups of degree $n$. It is shown that these Lie algebras have special "tableau" representation. We define a wreath product of a Lie algebra $L$ with an abelian finite-dimensional Lie algebra over the field $\mathbb{F}_p$. We prove that the Lie algebra associated with the lower central series of the group $P_{m,n}$ is isomorphic to the wreath product of $m$ copies of the abelian Lie algebra of dimension $n$ over the field $\mathbb{F}_p$.
Keywords
Lie algebra, wreath product, lower central series
DOI
doi:10.30970/ms.26.1.3-16
Reference
1. Bahturin Y.A. Identical Relations in Lie Algebras, Nauka, Moskow, 1985; \ VNU Scientific Press, Utrecht, 1987.

2. Bartoldi L., Grigorchuk R.I. Lie Methods in Growth of Groups and Groups of Finite Width, Computational and Geometric Aspects of Modern Algebra. Cambridge: Camb. Univ. Press, 2000, p. 1--28.

3. Bartoldi L. Lie Algebras and Grouth in Branch Groups, Pasific Journal of Mathematics, Vol. 218, No. 2, 2005, p. 241--282.

4. Huppert B., Blackburn N., Finite groups, V.2, Berlin etc., Springer, 1982.

5. Leedham-Green C.R., McKay S., The Structure of Groups of Prime Power Order, London Math. by Monographs, New Series, 27 Oxford Science Publication, 2002, 334~p.

6. Kaloujnine L. La structure des $p$--groupes de Sylow des groupes symetriques finis, Ann. Sci de l'Ecole Normal Superiore, Vol. 65, N. 3, 1948, p.~239--276.

7. Kaloujnine L.A., Sushchansky V.I. Wreath products of abelian groups, \ Trans. Mosc. Math. Soc., \ V. 29, 1976, p.~145--160.

8. Lazard M. Sur les groupes nilpotents et les anneaux de Lie, Annal Sci de l'Ecole Norm. Super. (3) 71, 1954, p.~101--190.

9. Magnus W., \"Uber Gruppen und zugeordnete Liesche Ringer, J. Reine Angew. Math., 182, 1940, p.~142--149.

10. Magnus W., Karras A., Soliter D. Combinatorial group theory, Interscience Publishers, New York-London-Sydney, 1966, 444~p.

11. Netreba N.V., Sushchansky V.I. Lie algebras associated with Sylow p-subgroups of finite symmetric groups, 5th International Algebraic Conference in Ukraine, Abstracts, Odessa, 2005, p.~142.

12. Shmelkin A.L., Wreath Product of Lie Algebras and their Application to Group Theory, Trudy Moskovs. Matem. O-va., V. 29, 1973, p.~247-260 (in Russian).

13. Sushchansky V.I., Wreath products of elementary abelian groups, Trans. Math. Notes, V. 11, 1972, p.~41--47.

14. Sushchansky V.I. The lower central series of Lie ring of Sylow p-subgroup of $I_sZ_p$, IV All-Union school of Lie algebra and their applications in mathematics and physics, Abstract, Kazan, 1990, p.~44 (in Russian).

15. Sushchansky V.I., Netreba N.V., Wreath product of Lie algebras and Lie algebras associated with Sylow p-subgroups of finite symmetric groups, Algebra and Discrete Mathematics, N. 1, 2005, p.~ 122--132.

16. Vaughan M., Lie Methods in group Theory, In: Group St. Andrews 2001 in Oxford, v. II, Cambridge: Camb. Univ. press, 2003, p.~547--585.

17. Zelmanov E. Nil Rings and Periodic Groups, The Korean Mathematical Society, 1992, 72~p.

Pages
3-16
Volume
26
Issue
1
Year
2006
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue