Cellular balleans

Author
O.I.Protasova
Department of Cybernetics,Kyiv National University
Abstract
We prove that a ballean is cellular if and only if its asymptotic Gromov dimension is $0$. We construct also a universal countable metrizable ballean and show that every separable non-Archimedean metric space is asymptotically embeddable into a Hilbert space.
Keywords
celluar balleans, asymptotic Gromov dimension, countable metrizable ballean
DOI
doi:10.30970/ms.25.1.3-9
Reference
1. Dranishnikov A. Asymptotic topology, Russian Math. Surveys, 55 (2000), no. 6, 71--116.

2. Dranishnikov A., Zarichnyi M. Universal spaces for asymptotic dimention. Topol. Appl. 140 (2004), no.2-3, 203–225.

3. Gromov M. Asymptotic invariants of infinite groups , London Math. Soc. Lecture Note Ser. 182 (1993).

4. Higson N., Roe J. Amenable group actions and the Novikov conjecture, J. reine angew. Math, 519 (2000), 143--135.

5. Mitchener P.D. Coarse Homology Theories, Algebr. Geom. Topology, 1 (2001), 271--297.

6. Protasov I., Banakh T. Ball Structures and Colorings of Graphs and Groups, Matem. Stud. Monogr. Ser., Vol. 11, 2003.

7. Protasov I.V. Metrizable ball structures, Algebra and Discrete Math.(2002), no.1, 129--141.

8. Roe J. Lectures on Coarse Geometry, AMS University Lecture Series, 31, 2003.

9. Sarnak P. What is ... an expander?, Notices of AMS, 51 (2004), 762--763.

Pages
3-9
Volume
25
Issue
1
Year
2006
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue